

www.qa-systems.com © Copyright QA Systems GmbH 2020

Which Coverage Metrics to Use

This paper provides a discussion of structural test coverage metrics, looking at the
practicality of their use for real software developments. It concludes that some metrics
are unsuitable for real use, and recommends suitable combinations of structural
coverage metrics for testing a range of integrity levels. It should be remembered that
structural coverage based on control flow analysis is only a good starting point for
thorough testing, and that other criteria for designing tests based on data flow and
required functionality should be included in an effective testing strategy.

White
Paper

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 2

Contents

1) Introduction .. 4

2) Evaluation Criteria .. 5

2.1 Evaluation Scores ... 5

3) Statement Coverage ... 6

3.1 Statement Coverage Evaluation Score ... 7

4) Decision Coverage .. 7

4.1 Decision Coverage Evaluation Score .. 8

5) LCSAJ Coverage ... 9

5.1 LCSAJ Coverage Evaluation Score ... 11

6) Path Coverage ... 11

6.1 Path Coverage Evaluation Score .. 12

7) Condition Operand Coverage ... 12

7.1 Condition Operand Coverage Evaluation Score ... 14

8) Condition Operator Coverage ... 14

8.1 Condition Operator Evaluation Score .. 15

9) Boolean Operand Effectiveness Coverage .. 16

9.1 Boolean Operand Effectiveness Evaluation Score ... 17

10) Conclusions ... 17

Annexe A: Experimental Data ... 20

Annexe B: Alternative Names ... 21

Annexe C: References .. 22

11) About QA Systems ... 23

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 3

Copyright Notice

Subject to any existing rights of other parties, QA Systems GmbH is the owner of the copyright of this
document. No part of this document may be copied, reproduced, stored in a retrieval system,
disclosed to a third party or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior written permission of QA Systems GmbH.
© Copyright QA Systems GmbH 2020

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 4

1 Introduction

Measurement of structural coverage of code is a means of assessing the thoroughness of testing.
There are a number of metrics available for measuring structural coverage, with increasing support
from software tools. Such metrics do not constitute testing techniques, but a measure of the
effectiveness of testing techniques.

A coverage metric is expressed in terms of a ratio of the metric items executed or evaluated at least
once to the total number of metric items. This is usually expressed as a percentage.

Code Coverage = Number of items executed at least once

Total number of executable items

There is significant overlap between the benefits of many of the structural coverage metrics.

It would be impractical to test against all metrics, so which metrics should be used as part of an
effective testing strategy?

This paper describes and discusses a selection of structural coverage metrics which are based on
control flow analysis. Other structural coverage metrics, such as those based on data flow analysis,
are not considered by this paper. For those interested in other metrics, Beizer [1] and Ntafos [4]
describe a good selection.

The reason for limiting this paper to structural coverage metrics, and in particular metrics based on
control flow, is that such metrics are most suitable for automated collection and analysis.
Automated collection and analysis is considered essential if a metric is to be used in a real software
development.

The authors have been involved with the development of a range of packages for the testing and
verification of software for a number of years. Support for coverage analysis was a high level
requirement, but decisions had to be made as to which metrics should be included. This paper has
been developed from investigations made during the analysis of requirements for these packages.

In sections 3 to 9 of this paper, metrics are described and assessed against a number of evaluation
criteria (which are specified in section 2). Specific attention is given to the practical use of each
metric and the feasibility of achieving 100% coverage.

The investigations conducted were based on static analysis and code reading, so the assessment is
mostly qualitative. However, a subjective score has been given for each metric against the
evaluation criteria (5=high, 1=low). Simple examples are given to illustrate specific points. Data
collected from an investigation of real code (summarised in Annex A) is used to support the analysis.

Section 10 summarises conclusions and makes recommendations to enable developers to apply
structural coverage metrics in a practical way in real software developments. There are many
equivalent names for each structural coverage metric. The names used in this paper are those
considered to be most descriptive. Equivalent alternative names are listed Annex B. References are
given in Annex C.

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 5

2 Evaluation Criteria

The first evaluation criterion is automation. To be of use on a real software development, which may
involve tens of thousands or hundreds of thousands of lines of code, a metric must be suitable for
automated collection and analysis.

A metric should also be achievable. It should be possible and practical to achieve 100% coverage (or
very close to 100% coverage) of a metric. Any value less than 100% may require investigation to
determine why less than 100% has been achieved. If it is because:

> of a problem in the code, the code should be fixed and tests re-executed.
> of a problem in the test, the test should be fixed and tests re-executed.
> 100% coverage is infeasible, the reasons should be ascertained and justified.

Infeasibility occurs because the semantics of the code constrain the coverage which can be achieved,
for example: defensive programming, error handling, constraints of the test environment, or
characteristics of the coverage metric. Infeasibility should be the only reason for metric values of
less than 100% to be accepted.

When 100% coverage is infeasible, the effort required for investigation and to take appropriate
action is important. This will depend on the frequency at which coverage of less than 100% occurs
and on how comprehensible the metric is. To be comprehensible the relationship between a metric,
design documentation and code should be simple.

Software has to be retested many times throughout its life. Test data required to achieve 100%
coverage therefore has to be maintainable. Changes required of test data should not be
disproportionate in scale to changes made to the code.

An ideal criterion against which a coverage metric should be assessed is its effectiveness at detecting
faults in software. To measure the effectiveness of each coverage metric would require extensive
data collection from software tested using the entire range of coverage metrics. The size of such a
data collection would require orders of magnitude more effort than the investigation described in
Annex A.

As the investigation was based on static analysis and code reading, the actual effectiveness of each
metric could not be quantified. For the purposes of this paper, effectiveness is assumed to be a
function of thoroughness. The thoroughness with which test data designed to fulfil a metric actually
exercises the code is assessed. A higher thoroughness score is attributed to metrics which demand
more rigorous test data to achieve 100% coverage.

2.1 Evaluation Scores
For each Coverage Metric the Evaluation Criteria are subjectively scored 5=high to 1=low:

> Automation
> Achievable
> Comprehensible
> Maintainable
> Thoroughness

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 6

The summary of scores for each evaluated coverage metric is contained in Table 1.

3 Statement Coverage

Statement Coverage =
Number of statements executed at least once

Total number of executable statements

Alternate names: C1, TER1, TER-S

Statement coverage is the simplest structural coverage metric. From a measurement point of view
one just keeps track of which statements are executed, then compares this to a list of all executable
statements. Statement coverage is therefore suitable for automation.

Statement coverage is easily comprehensible, with the units of measurement (statements)
appearing directly in the code. This makes analysis of incomplete statement coverage a simple task.

It is practical to achieve 100% statement coverage for nearly all code. An investigation of real code
(as described in annex A) showed no infeasible statements. 100% statement coverage was
achievable for all modules analysed. However, statement coverage is not a very good measure of
test thoroughness. Consider the following fragment of code:

Example 3a

Full statement coverage of example 3a could be achieved with just a single test for which
CONDITION evaluated to true. The test would not differentiate between the code given in example
3a and the code given in example 3b.

Example 3b

Another criticism of statement coverage, is that test data which achieves 100% statement coverage
of source code, will often cover less than 100% coverage of object code instructions. Beizer [1]
quantifies this at about 75%.

Test data for statement coverage is maintainable by virtue of its simplicity and comprehensible
relationship to the code.

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 7

3.1 Statement Coverage Evaluation Score

> Automation 5
> Achievable 5
> Comprehensible 5
> Maintainable 5
> Thoroughness 1

4 Decision Coverage

Decision Coverage =
Number of decision outcomes evaluated at least once

Total number of decision outcomes

Alternate names: C2, Branch Coverage, TER2, TER-B

To achieve 100% decision coverage, each condition controlling branching of the code has to evaluate
to both true and false. In example 4a, decision coverage requires two test cases.

Example 4a

Test Condition
1 True
2 False

Not all decision conditions are as simple, decision conditions are also in case or switch statements
and in loops. However, this does not present an obstacle to automation.

The units of measurement (decision conditions) appear directly in the code, making decision
coverage comprehensible and investigation of incomplete decision coverage straight forward. An
investigation of real code (as described in annex A) showed no infeasible decision outcomes. 100%
decision coverage was achievable for all modules analysed.

Test data designed to achieve decision coverage is maintainable. Equivalent code to example 4a,
shown in example 4b, would not require changes to test data for decision coverage.

Example 4b

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 8

For structured software, 100% decision coverage will necessarily include 100% statement coverage.
The weakness of decision coverage becomes apparent when non-trivial conditions are used to
control branching. In example 4c, 100% decision coverage could be achieved with two test cases, but
without fully testing the condition.

Example 4c

Test A B
1 True True
2 False True

Untested True False
Untested False False

For a compound condition, if two or more combinations of components of the condition could cause
a particular branch to be executed, decision coverage will be complete when just one of the
combinations has been tested. Yet compound conditions are a frequent source of code bugs.

The thoroughness of test data designed to achieve decision coverage is therefore an improvement
over statement coverage, but can leave compound conditions untested.

4.1 Decision Coverage Evaluation Score

> Automation 5
> Achievable 5
> Comprehensible 5
> Maintainable 5
> Thoroughness 2

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 9

5 LCSAJ Coverage

LCSAJ Coverage =
Number of LCSAJs exercised at least once

Total number of LCSAJs

Alternate names: TER3, TER-L

An LCSAJ is defined as an unbroken linear sequence of statements:

> which begins at either the start of the program or a point to which the control flow may
jump,

> which ends at either the end of the program or a point from which the control flow may
jump,

> and the point to which a jump is made following the sequence.

Hennell [3] gives a full explanation and some examples to help illustrate the definition of an LCSAJ.

LCSAJs depend on the topology of a module's design and not just its semantics, they do not map
onto code structures such as branches and loops. LCSAJs are not easily identifiable from design
documentation. They can only be identified once code has already been written. LCSAJs are
consequently not easily comprehensible.

Automation of LCSAJ coverage is a bit more difficult than automation of decision coverage.
However, it is relatively easily achieved.

Small changes to a module can have a significant impact on the LCSAJs and the required test data,
leading to a disproportionate effort being spent in maintaining LCSAJ coverage and maintaining test
documentation. Unfortunately this dependence cannot be illustrated with trivial examples. In
examples 5a LCSAJs are marked as vertical bars.

Example 5a

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 10

Suppose condition B were to be negated and the two nested 'if-else' constructs were to swap
positions in the code. Condition A would then be combined in LCSAJs with condition D, whereas
condition E would be combined in LCSAJs with condition C. The code would be effectively the same,
but the LCSAJs against which LCSAJ coverage is measured would have changed.

A similar problem occurs with case or switch statements, where LCSAJs lead into the first alternative
and lead out of the last alternative, as shown in example 5b.

Example 5b

To achieve LCSAJ coverage, condition A must be tested both true and false with each branch of the
case, whereas condition C need only be tested true and false with the last case and one other case. If
the sequence of the case branches was modified, or a default (others) case was appended to the
case statement, the LCSAJs against which coverage is measured would again change significantly.

Many minor changes and reorganisations of code result in large changes to the LCSAJs, which will in
turn have an impact on the test data required to achieve LCSAJ coverage. Test data for LCSAJ
coverage is therefore not easily maintainable. Minor reorganisations of code have little or no impact
on the test data required by other coverage metrics discussed in this paper.

A large proportion of modules contain infeasible LCSAJs and as a result, achieving 100% LCSAJ
coverage for other than very simple modules is frequently not achievable. Hedley [2] provides data
on some FORTRAN code, with an average of 56 LCSAJs per module, in which 12.5% of LCSAJs were
found to be infeasible.

An experimental investigation of code, as described in annex A, with an average of 28 LCSAJs per
module, showed 62% of modules to have one or more infeasible LCSAJs. Each LCSAJ which has not
been covered has to be analysed for feasibility. The large amount of analysis required for infeasible
LCSAJs is the main reason LCSAJ coverage is not a realistically achievable test metric.

Hennell [3] provides evidence that testing with 100% LCSAJ coverage as a target is more effective
than 100% decision coverage. Test data designed to achieve 100% LCSAJ coverage is therefore more
thorough than test data for decision coverage. However, like decision coverage, LCSAJ coverage can
be complete when just one of the combinations of a compound condition has been tested (as
demonstrated in example 4c).

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 11

5.1 LCSAJ Coverage Evaluation Score

> Automation 4
> Achievable 1
> Comprehensible 1
> Maintainable 2
> Thoroughness 3

6 Path Coverage

Path Coverage =
Number of paths executed at least once

Total number of paths

Alternate names: TER-P

Path coverage looks at complete paths through a program. For example, if a module contains a loop,
then there are separate paths through the module for one iteration of the loop, two iterations of the
loop, through to n iterations of the loop. The thoroughness of test data designed to achieve 100%
path coverage is higher than that for decision coverage.

If a module contains more than one loop, then permutations and combinations of paths through the
individual loops should be considered. Example 6a shows the first few test cases required for path
coverage of a module containing two 'while' loops.

Example 6a

Test A B
1 False False
2 (True, False) False
3 (True, False) (True, False)
4 (True, True, False) False

It can be seen that path coverage for even a simple example can involve a large number of test
cases. A tool for automation of path coverage would have to contend with a large (possibly infinite)
number of paths. Although paths through code are readily identifiable, the sheer number of paths
involved prevents path coverage from being comprehensible for some code.

As for LCSAJs, it must be considered that some paths are infeasible. Beizer [1], Hedley [2] and
Woodward [6] conclude that only a small minority of program paths are feasible. Path coverage is

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 12

therefore not an achievable metric. To make path coverage achievable the metric has to be
restricted to feasible path coverage.

Feasible Path Coverage =
Number of paths executed at least once

Total number of feasible paths

Extracting the complete set of feasible paths from a design or code is not suitable for automation.
Feasible paths can be identified manually, but a manual identification of feasible paths can never
ensure completeness other than for very simple modules. For this reason path coverage was not
included in the investigation described in annex A. Both path coverage and feasible path coverage
are not easily maintainable. The potential complexity and quantity of paths which have to be tested
means that changes to the code may result in large changes to test data.

6.1 Path Coverage Evaluation Score

> Automation 1
> Achievable 1 (feasible 3)
> Comprehensible 2
> Maintainable 2 (feasible 1)
> Thoroughness 4

7 Condition Operand Coverage

Condition Operand Coverage =
Number of condition operand values evaluated at least once

Total number condition operand values

Alternate names: Branch Condition Coverage, BC Coverage

Condition operand coverage gives a measure of coverage of the conditions which could cause a
branch to be executed. Condition operands can be readily identified from both design and code,
with condition operand coverage directly related to the operands. This facilitates automation and
makes condition operand coverage both comprehensible and maintainable.

Condition operand coverage improves the thoroughness of decision coverage by testing each
operand of decision conditions with both true and false values, rather than just the whole condition.
However, condition operand coverage is only concerned with condition operands, and does not
include loop decisions.

A weakness in the thoroughness of condition operand coverage is illustrated by examples 7a and 7b.

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 13

In example 7a, 100% condition operand coverage requires test data with both true and false values
of operands A and B.

Example 7a

Example 7b

Condition operand coverage is vulnerable to flags set outside of decision conditions. As a common
programming practice is to simplify complex decisions by using Boolean expressions with flags as
intermediates, the thoroughness of condition operand coverage is therefore not as good as it could
be. Equivalent code in example 7b can be tested to 100% condition operand coverage by only testing
with true and false values of FLAG, but A or B need not have been tested with both true and false
values.

Thoroughness can be improved by including all Boolean expressions into the coverage metric. The
term Boolean expression operand coverage refers to such a development of condition operand
coverage.

Boolean Expression
Operand Coverage =

Number of Boolean operand values evaluated at least once

Total number Boolean operand values

Alternate names: Branch Condition and Flag Coverage, BCF Coverage

Applying Boolean expression operand coverage to example 7b, in order to achieve 100% coverage,
test cases are required in which each of A, B and FLAG have values of true and false.

There were no infeasible operand values in the real code investigated (see Annex A). 100% Boolean
expression operand coverage was therefore achievable for all modules investigated.

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 14

7.1 Condition Operand Coverage Evaluation
Score

> Automation 4
> Achievable 5
> Comprehensible 5
> Maintainable 5
> Thoroughness 2 (Boolean 3)

8 Condition Operator Coverage

Condition Operator Coverage =
Number of condition combinations evaluated at least once

Total number of condition operator input combinations

Alternate names: Branch Condition Combination Coverage, BCC Coverage, Multiple Condition
Coverage

Condition operator coverage looks at the various combinations of Boolean operands within a
condition. Each Boolean operator (and, or, xor) within a condition has to be evaluated four times,
with the operands taking each possible pair of combinations of true and false, as shown in example
8a.

Example 8a

Test A B

1 True False
2 True True
3 False False
4 False True

As for condition operand coverage, Boolean operators and operands can be readily identified from
design and code, facilitating automation and making condition operator coverage both
comprehensible and maintainable. However, condition operator coverage becomes more complex
and less comprehensible for more complicated conditions. Automation requires recording of
Boolean operand values and the results of Boolean operator evaluations.

As for condition operand coverage, achieving condition operator coverage will not be meaningful if a
condition uses a flag set by a previous Boolean expression. Examples 7a and 7b illustrated this point.
Boolean expression operator coverage improves upon the thoroughness of condition operator
coverage by evaluating coverage for all Boolean expressions, not just those within branch conditions.

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 15

Boolean Expression
Operator Coverage =

Number of Boolean operator input combinations evaluated at least once

Total number of Booleans operator input combinations

Alternate names: Branch Condition Combination and Flag Coverage, BCCF Coverage

The thoroughness of Boolean expression operator coverage is higher than for condition operand
coverage, in that sub-expressions of all compound conditions will be evaluated both true and false.
The investigation of code, described in Annex A, identified two infeasible operand combinations
which prevented 100% condition operand coverage being achievable. Both of these operand
combinations occurred in a single module. The general form of the infeasible combinations is given
in example 8b.

Example 8b

Test =N1 =N2
1 True False
2 False True
3 False False
 Infeasible
 True True

The infeasible operand combinations were both due to mutually exclusive sub-expressions, which
(assuming N1 /= N2) could never both be true at the same time. Infeasible operand combinations
are rare, are readily identifiable during design, and do not depend upon the topology of the code.
Boolean expression operator coverage is much more achievable than LCSAJ coverage.

8.1 Condition Operator Evaluation Score

> Automation 3
> Achievable 5
> Comprehensible 5
> Maintainable 5
> Thoroughness 4

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 16

9 Boolean Operand Effectiveness Coverage

Boolean Operand
Effectiveness Coverage =

Number of Boolean operands shown to independently affect the outcome
of Boolean expressions

Total number of Boolean operands

Alternate names: Boolean Effectiveness Coverage, MC/DC Modified Condition Decision Coverage

To achieve Boolean operand effectiveness coverage, each Boolean operand must be shown to be
able to independently influence the outcome of the overall Boolean expression. The straight forward
relationship between test data and the criteria of Boolean operand effectiveness coverage makes
the metric comprehensible and associated test data maintainable. This is illustrated by example 9a.

Example 9a

Test A B C
1 True True False
2 False True False
3 True True False
4 True False False
5 False False True
6 False False False

* Tests 1 and 2 show independence of A
* Tests 3 and 4 show independence of B
* Tests 5 and 6 show independence of C

It is worth noting that there are other sets of test data which could have been used to show the
independence of C.
There were no infeasible operand values in the real code investigated (see annex A), and only two
infeasible operand combinations, neither of which obstructed the criteria of Boolean operand
effectiveness coverage. 100% Boolean operand effectiveness coverage was therefore achievable for
all modules investigated.
Boolean operand effectiveness coverage is only concerned with the operands and will not always
identify expressions which are using an incorrect operator. Research by Boeing [7],[8] has shown
that for single mutations to operators in a Boolean expression, Boolean Operand effectiveness
coverage is as thorough as Boolean expression operator coverage, but that it is less thorough for
multiple mutations. As multiple mutations are unlikely, we conclude that the thoroughness of test
data designed to achieve 100% Boolean operand effectiveness coverage is about the same as the
thoroughness of Boolean expression operator coverage.
Automation of Boolean operand effectiveness coverage requires the state of all Boolean operands in
a Boolean expression to be recorded each time the expression is evaluated. The ability of an
operator to independently affect the outcome will not necessarily be demonstrated by adjacent
evaluations of the expression (as in example 9a).

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 17

9.1 Boolean Operand Effectiveness Evaluation
Score

> Automation 3
> Achievable 5
> Comprehensible 5
> Maintainable 5
> Thoroughness 4

10 Conclusions

The use of any coverage metric as an aid to program testing is beneficial for software quality.
However, some metrics are more achievable than others, even with the benefit of tools. The size of
real software developments means that automation should be regarded as a prerequisite for the use
of any coverage metric. Provided that automation is available from a tool, the difficulty that the tool
suppliers have encountered in implementing the tool is irrelevant to software developers.

To be practical for use on a real software development, a coverage metric must be achievable.
Developers should not have to expend effort on justification of large numbers of infeasible metric
items. Not all software developers will have the experience and understanding of coverage metrics
to work with metrics which are not comprehensible. Effective use of a coverage metric requires that
all members of a development team can understand how to use the metric, and do not make
mistakes as a result of complexities of the metric.

A large proportion of the life cycle cost of software is expended on maintenance. Even during
development, modules of code will usually undergo a number of changes. Each time code is
changed, it has to be retested; maintainability of test data is consequently a major consideration
when selecting a coverage metric.

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 18

Table 1 provides a summary of the evaluation criteria and the scores assigned for each coverage
metric investigated.

Table 1 - Summary of Evaluation Criteria

From these criteria it is concluded that LCSAJ coverage and path coverage are not practical metrics
for use in real software developments. However, these metrics should not be ruled out of further
research. In practice, many testing strategies are based on the identification of feasible paths in
support of other metrics, but without actually using path coverage as a metric.

The remaining criteria of thoroughness can now be used to rank the metrics. Testing software which
requires higher integrity should include coverage metrics of higher thoroughness. (The design of test
data should also consider data flow and required functionality, as concluded by Weiser [5]).

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 19

From this criteria, it is concluded that statement coverage is a valid starting point, but should only be
used by itself for software of low integrity. Decision coverage by itself is still not particularly
thorough, but it does include some coverage of loops which is not required by any of the other
metrics.

Coverage metrics which consider all Boolean expressions should be used in preference to those
which only consider conditions. They offer improved thoroughness of test data with no
disadvantages.

None of the coverage metrics considered in this paper have been assigned a thoroughness score of
5. The conceptual thoroughness of 5 is only a target for structural coverage. The structural coverage
metrics discussed in this paper should never be used as the sole objective when designing test data.
Criteria other than control flow based structural coverage should also be considered when designing
test data, such as boundary conditions, data flows and functional requirements.

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 20

Annexe A: Experimental Data
This annex describes an investigation of code using a combination of automated analysis tools and
manual analysis.

A total of 77 modules from two projects were analysed. Project 1 was a real time control system,
from which 47 modules comprising a user interface and a communications subsystem were taken.
Project 2 was a design tool, from which 30 modules comprising a diagram editor were taken. Both
projects used the 'C' language.

Analysis consisted of the identification of branches, LCSAJs and compound conditions (including
Boolean expressions outside of branch conditions). Statements, branches, LCSAJs and compound
conditions were assessed for feasibility. The data collected is summarised in table 2.

Table 2 – Summary of Investigation Data

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 21

Annexe B: Alternative Names
There are many equivalent names for each structural coverage metric. The names used in this paper
are those considered to be most descriptive. Equivalent alternative names are listed in this annex.
Coverage metrics are sometimes referred to as Test Effectiveness Ratios, abbreviated to TER. This
abbreviation appears in a number of the alternative names.

Statement Coverage:
- C1
- TER1
- TER-S
Decision Coverage:
- C2
- Branch Coverage
- TER2
- TER-B
LCSAJ Coverage:
- TER3
- TER-L
Path Coverage:
- TER-P
Condition Operand Coverage:
- Branch Condition Coverage
- BC Coverage
Boolean Expression Operand Coverage:
- Branch Condition and Flag Coverage
- BCF Coverage
Condition Operator Coverage:
- Branch Condition Combination Coverage
- BCC Coverage
- Multiple Condition Coverage
Boolean Expression Operator Coverage:
- Branch Condition Combination and Flag Coverage
- BCCF Coverage
Boolean Operand Effectiveness Coverage:
- Boolean Effectiveness Coverage
- Modified Condition Decision Coverage

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 22

Annexe C: References
[1] B.Beizer
 "Software Testing Techniques", Second Edition,
 Van Nostrand Reinhold 1990.
[2] D.Hedley,M.A.Hennell
 "The Causes and Effects of Infeasible Paths in Computer Programs",
 Proceedings 8th International Conference on Software Engineering, IEEE, London1985.
[3] M.A.Hennell, D.Hedley, I.J.Riddell
 "Assessing a Class of Software Tools",
 Proceedings IEEE 7th International Conference on Software Engineering, Orlando, pp 266-
 277, 1984.
[4] S.C.Ntafos
 "A Comparison of Some Structural testing Strategies",
 IEEE Transactions on Software Engineering, Vol 14, No 6, pp 868-874, June 1988.
[5] M.D.Weiser, J.D.Gannon, P.R.McMullin.
 "Comparison of Structural Test Coverage Metrics",
 IEEE Software, Vol 2, No 2, pp 80-85, March 1985.
[6] M.R.Woodward, D.Hedley,M.A.Hennell
 "Experience with Path Analysis and Testing of Programs",
 IEEE Transactions on Software Engineering, VOL SE-6, No 3, pp 278-286, May 1980.
[7] J.J Chilenski, S.P. Miller
 “Applicability of Modified Condition Decision Coverage to Software Testing”
 Boeing Company and Rockwell International Corporation, 1993.
[8] J.J Chilenski
 Presentation
 Boeing Company, 1995

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 23

11 About QA Systems

QA Systems tools automate unit testing, code coverage, integration testing and static analysis to
optimise safety and business critical embedded software and accelerate standards compliance.
Quality is the driving force behind QA Systems. With over 20 years of experience, our tools and
services enable organizations worldwide to develop tested high-quality software which meets the
stringent demands of industry safety standards. All tools are independently certified by SGS TüV for
use at the highest integrity level of safety related software development for all major safety
standards (ISO 26262, IEC 61508, IEC 62304, EN 50128, and IEC 60880), and qualifiable for standards
such as DO-178B/C. Founded in 1996 by CEO and racing driver, Andreas Sczepansky, QA Systems
operates across Europe and through a global reseller network. QA Systems has over 350 blue-chip
customers, across all safety related and business critical industries. In addition to our tools, the QA
Systems Academy shares our know-how and expertise with engineers from around the world.

SOFTWARE QUALITY ASSURANCE | TOOLS & TECHNOLOGY | PROFESSIONAL SERVICES | ACADEMY

Which Code Coverage Metrics to Use Page | 24

Cantata is a registered trademark of QA Systems GmbH ©. The Cantata logo, trade
names and this document are trademarks and property of QA Systems GmbH ©.
QA Systems
With offices in Waiblingen, Germany | Bath, UK | Boston, USA | Paris, France | Milan, Italy
www.qa-systems.com | www.qa-systems.de

	1 Introduction
	2 Evaluation Criteria
	2.1 Evaluation Scores

	3 Statement Coverage
	3.1 Statement Coverage Evaluation Score

	4 Decision Coverage
	4.1 Decision Coverage Evaluation Score

	5 LCSAJ Coverage
	5.1 LCSAJ Coverage Evaluation Score

	6 Path Coverage
	6.1 Path Coverage Evaluation Score

	7 Condition Operand Coverage
	7.1 Condition Operand Coverage Evaluation Score

	8 Condition Operator Coverage
	8.1 Condition Operator Evaluation Score

	9 Boolean Operand Effectiveness Coverage
	9.1 Boolean Operand Effectiveness Evaluation Score

	10 Conclusions
	Annexe A: Experimental Data
	Annexe B: Alternative Names
	Annexe C: References
	11 About QA Systems

