
QA-MISRA

Compliance Matrices for

CWE (Common Weakness Enumeration)
SEI CERT C/C++

JSF AV C++
ISO/IEC TS 17961:2013

HIS Metrics

Release 23.04, b13183398

April 18, 2023

QA Systems GmbH
powered by AbsInt Angewandte Informatik GmbH

https://www.qa-systems.com/tools/qa-misra/

CONTACT:

QA Systems GmbH
support@qa-systems.com
www.qa-systems.com
www.qa-systems.de/tools/qa-misra/

COPYRIGHT NOTICE:

© QA Systems GmbH

The product name QA-MISRA is a registered trademark of QA Systems GmbH. "MISRA" and "MISRA C" are
registered trademarks owned by The MISRA Consortium Ltd., held on behalf of the MISRA Consortium.
QA-MISRA is an independent tool of QA Systems and is not associated with the MISRA Consortium.

All rights reserved. This document, or parts of it, or modified versions of it, may not be copied, reproduced
or transmitted in any form, or by any means, or stored in a retrieval system, or used for any purpose,
without the prior written permission of QA Systems GmbH.

The information contained in this document is subject to change without notice.

LIMITATION OF LIABILITY:

Every effort has been taken in manufacturing the product supplied and drafting the accompanying docu-
mentation.

QA Systems GmbH makes no warranty or representation, either expressed or implied, with respect to the
software, including its quality, performance, merchantability, or fitness for a particular purpose. The entire
risk as to the quality and performance of the software lies with the licensee.

Because software is inherently complex and may not be completely free of errors, the licensee is advised to
verify his work where appropriate. In no event will QA Systems GmbH be liable for any damages whatsoever
including – but not restricted to – lost revenue or profits or other direct, indirect, special, incidental, cover,
or consequential damages arising out of the use of or inability to use the software, even if advised of the
possibility of such damages, except to the extent invariable law, if any, provides otherwise.

QA Systems GmbH also does not recognize any warranty or update claims unless explicitly provided for
otherwise in a special agreement.

Known Safety Issues:

www.absint.com/known-issues/qa-misra/23.04.md

2 QA Systems GmbH

mailto:support@qa-systems.com
http://www.qa-systems.com
http://www.qa-systems.de/tools/qa-misra/
http://www.absint.com/known-issues/qa-misra/23.04.md

Contents

1 Introduction 4
1.1 Terms and Definitions . 4

2 Common Weakness Enumeration – CWE 6

3 SEI CERT C/C++ Coding Standard 18
3.1 SEI CERT C Coding Standard . 18
3.2 SEI CERT C++ Coding Standard . 35

4 JSF AV C++ 45

5 ISO/IEC TS 17961:2013 66

6 HIS Metrics 70

Bibliography 72

QA-MISRA Compliance Matrices 3

1 Introduction

QA-MISRA is a static analyzer that checks for violations of coding guidelines such as MISRA. It supports
the MISRA-C:2004, MISRA C:2012, MISRA C++:2008, AUTOSAR C++14, ISO/IEC TS 17961:2013, CERT, JSF AV
C++, and CWE rule sets, as well as rules for coding style and thresholds for code metrics.

Astrée (https://www.absint.com/astree/index.htm) is a static code analyzer that proves the ab-
sence of runtime errors and invalid concurrent behavior in safety-critical software written or generated
in C or C++. Astrée and QA-MISRA can be seamlessly integrated. Using QA-MISRA in conjunction with the
sound semantic analyses offered by Astrée guarantees zero false negatives and minimizes false positives
on semantical rules.

1.1 Terms and Definitions

If not stated otherwise for a specific set of guidelines, the degree of rule support is classified as follows.

fully checked A rule is fully checked (FC) if the checks adhere exactly to the rule text and the analysis
will never miss a rule violation. For fully checked rules, absence of alarms means the tool can prove the
absence of violations of this rule. False alarms may be issued.

This degree of support may be raised to fully checked + exact (FC+E) if the absence of false alarms can be
guaranteed.

partially checked A rule is partially checked (PC) if the checks either check only some aspects or a
(simplifying) reformulation of the rule (text) and/or the rule may miss rule violations. For partially
checked rules, absence of alarms does not imply absence of rule violations. False alarms may be issued.

This degree of support may be raised to partially checked + soundly supported (PC + S) if activating Astrée’s
semantic analysis underpins the rule check by issuing semantic alarms for violations of the rule and
by proving the absence of violations of some aspects of the rule or if the analyzer’s frontend implicitly
checks some aspects of the rule.

(soundly) supported A rule is classified as (soundly) supported (S) if there are no dedicated checks, but
an analysis run may produce evidence whether or not the rule is broken. This compliance level may
require that the user provides appropriate analysis stubs.

For example, the rule "No reliance shall be placed on undefined or unspecified behavior." (MISRA-C:2004,
rule 1.2) is supported by Astrée because Astrée reports undefined and unspecified behavior.

4 QA Systems GmbH

https://www.absint.com/astree/index.htm

Chapter 1: Introduction
1.1 Terms and Definitions

not checked A rule is not checked (NC) if there are no dedicated checks and checking the rule is not
supported by the analyzer.

Coding guideline checks can be executed with or without runtime error analysis. Coupling QA-MISRA
with Astrée’s runtime error analysis can raise the degree to which a coding guideline is supported.

The following table shows the degree of rule support for each rule assuming no coupling. Detailed
information on the degree of support when coupled with Astrée can be found in the dedicated a3 for
C/C++ Compliance documentation.

QA-MISRA Compliance Matrices 5

2 Common Weakness Enumeration – CWE

The compliance matrix has been filled with one of the following values corresponding to the Match
Accuracy element defined by CWE CCR:

• E = Exact

• MA = CWE-more-abstract

• MS = CWE-more-specific

• P = CWE-partial

• NC = Not-covered

In case the match accuracy for QA-MISRA in stand-alone analysis mode differs, it is given in parenthesis.

Note that all rules reported by Astrée are sound, in that if a message or alarm is relevant for a given
program, then it will be reported by the tool.

Coding guideline checks can be executed with or without runtime error analysis. Coupling QA-MISRA
with Astrée’s runtime error analysis can raise the degree to which a coding guideline is supported.

The following table shows the degree of rule support for each rule assuming no coupling. Detailed
information on the degree of support when coupled with Astrée can be found in the dedicated a3 for
C/C++ Compliance documentation.

In total, 25 rules of the rule set – i. e. 14% of all 183 rules – are checked:

All Rules
fully checked 1 (1 %)
partially checked 24 (13 %)
implicitly checkable 0 (0 %)
not checked 158 (86 %)

Common Weakness Enumeration – CWE Support

14 Compiler Removal of Code to Clear Buffers NC

15 External Control of System or Configuration Setting NC

Astrée provides the taint analysis that can track untrusted data

22 Improper Limitation of a Pathname to a Restricted Directory
(’Path Traversal’)

NC

continues on the next page. . .

6 QA Systems GmbH

https://cwe.mitre.org/compatible/ccr.html

Chapter 2: Common Weakness Enumeration – CWE

Common Weakness Enumeration – CWE Support

. . . continued

23 Relative Path Traversal NC

36 Absolute Path Traversal NC

73 External Control of File Name or Path NC

Astrée provides the taint analysis that can track untrusted data

77 Improper Neutralization of Special Elements used in a Command
(’Command Injection’)

NC

Astrée provides the taint analysis that can track untrusted data

78 Improper Neutralization of Special Elements used in an OS Com-
mand (’OS Command Injection’)

NC

Astrée provides the taint analysis that can track untrusted data

79 Improper Neutralization of Input During Web Page Generation
(’Cross-site Scripting’)

NC

Astrée provides the taint analysis that can track untrusted data

88 Argument Injection or Modification NC

Astrée provides the taint analysis that can track untrusted data

89 Improper Neutralization of Special Elements used in an SQL Com-
mand (’SQL Injection’)

NC

Astrée provides the taint analysis that can track untrusted data

90 Improper Neutralization of Special Elements used in an LDAP
Query (’LDAP Injection’)

NC

Astrée provides the taint analysis that can track untrusted data

91 XML Injection (aka Blind XPath Injection) NC

Astrée provides the taint analysis that can track untrusted data

99 Improper Control of Resource Identifiers (’Resource Injection’) NC

Astrée provides the taint analysis that can track untrusted data

114 Process Control NC

117 Improper Output Neutralization for Logs NC

Astrée provides the taint analysis that can track untrusted data

118 Improper Access of Indexable Resource P

continues on the next page. . .

QA-MISRA Compliance Matrices 7

Chapter 2: Common Weakness Enumeration – CWE

Common Weakness Enumeration – CWE Support

. . . continued

Incorrect field dereference, Out-of-bound array access, Dereference of
null or invalid pointer, Possible overflow upon derefenrece

119 Improper Restriction of Operations within the Bounds of a Mem-
ory Buffer

NC

Incorrect field dereference, Possible overflow upon dereference

120 Buffer Copy without Checking Size of Input (’Classic Buffer Over-
flow’)

NC

Incorrect field dereference, Possible overflow upon dereference

121 Stack-based Buffer Overflow NC

Incorrect field dereference, Possible overflow upon dereference

122 Heap-based Buffer Overflow NC

Incorrect field dereference, Possible overflow upon dereference

123 Write-what-where Condition P

Incorrect field dereference, Out-of-bound array access, Dereference of
null or invalid pointer, Possible overflow upon derefenrece

124 Buffer Underwrite P

Out-of-bound array index, Invalid dereference

125 Out-of-bounds Read P

Incorrect field dereference, Out-of-bound array access, Dereference of
null or invalid pointer, Possible overflow upon derefenrece

126 Buffer Over-read P

Incorrect field dereference, Out-of-bound array access, Dereference of
null or invalid pointer, Possible overflow upon derefenrece

127 Buffer Under-read P

Incorrect field dereference, Out-of-bound array access, Dereference of
null or invalid pointer, Possible overflow upon derefenrece

128 Wrap-around Error NC

Overflow in arithmetic, Overflow in conversion

129 Improper Validation of Array Index P

Incorrect field dereference, Out-of-bound array access

continues on the next page. . .

8 QA Systems GmbH

Chapter 2: Common Weakness Enumeration – CWE

Common Weakness Enumeration – CWE Support

. . . continued

130 Improper Handling of Length Parameter Inconsistency NC

131 Incorrect Calculation of Buffer Size NC

Incorrect field dereference, Possible overflow upon dereference

134 Uncontrolled Format String NC

Astrée provides the taint analysis that can track untrusted data

170 Improper Null Termination NC

176 Improper Handling of Unicode Encoding NC

188 Reliance on Data/Memory Layout NC

RTE consequence of the invalid assumption

190 Integer Overflow or Wraparound NC

Overflow in arithmetic, Overflow in conversion

191 Integer Underflow or Wraparound NC

Overflow in arithmetic, Overflow in conversion

193 Off-by-one Error NC

RTE consequence of the off-by-one error

194 Unexpected Sign Extension NC

Overflow in conversion

195 Signed to Unsigned Conversion Error NC

Overflow in conversion

196 Unsigned to Signed Conversion Error NC

Overflow in conversion

197 Numeric Truncation Error NC

Overflow in conversion

226 Sensitive Information Uncleared Before Release NC

240 Improper Handling of Inconsistent Structural Elements NC

242 Use of Inherently Dangerous Function NC

243 Creation of chroot Jail Without Changing Working Directory NC

continues on the next page. . .

QA-MISRA Compliance Matrices 9

Chapter 2: Common Weakness Enumeration – CWE

Common Weakness Enumeration – CWE Support

. . . continued

244 Improper Clearing of Heap Memory Before Release (’Heap Inspec-
tion’)

NC

250 Execution with Unnecessary Privileges NC

252 Unchecked Return Value NC

253 Incorrect Check of Function Return Value NC

256 Plaintext Storage of a Password NC

259 Use of Hard-coded Password NC

261 Weak Cryptography for Passwords NC

272 Least Privilege Violation NC

285 Improper Authorization NC

292 DEPRECATED (Duplicate): Trusting Self-reported DNS Name NC

297 Improper Validation of Certificate with Host Mismatch NC

306 Missing Authentication for Critical Function NC

307 Improper Restriction of Excessive Authentication Attempts NC

311 Missing Encryption of Sensitive Data NC

320 Key Management Errors NC

321 Use of Hard-coded Cryptographic Key NC

325 Missing Required Cryptographic Step NC

326 Inadequate Encryption Strength NC

327 Use of a Broken or Risky Cryptographic Algorithm NC

328 Reversible One-Way Hash NC

Can be checked by suitable stubs for the corresponding functions.

329 Not Using a Random IV with CBC Mode NC

330 Use of Insufficiently Random Values NC

331 Insufficient Entropy NC

335 PRNG Seed Error NC

336 Same Seed in PRNG NC

337 Predictable Seed in PRNG NC

continues on the next page. . .

10 QA Systems GmbH

Chapter 2: Common Weakness Enumeration – CWE

Common Weakness Enumeration – CWE Support

. . . continued

338 Use of Cryptographically Weak Pseudo-Random Number Genera-
tor (PRNG)

NC

350 Reliance on Reverse DNS Resolution for a Security-Critical Action NC

352 Cross-Site Request Forgery (CSRF) NC

359 Exposure of Private Information (’Privacy Violation’) NC

362 Concurrent Execution using Shared Resource with Improper Syn-
chronization (’Race Condition’)

NC

Read/Write data race

364 Signal Handler Race Condition NC

Read/Write data race

365 Race Condition in Switch NC

Read/Write data race

366 Race Condition within a Thread NC

Read/Write data race

367 Time-of-check Time-of-use (TOCTOU) Race Condition NC

Read/Write data race

369 Divde By Zero NC

Float division by zero, Integer division by zero

377 Insecure Temporary File NC

398 Indicator of Poor Code Quality NC

Usage of sets of rule checks, such as MISRA

400 Uncontrolled Resource Consumption (’Resource Exhaustion’) NC

401 Improper Release of Memory Before Removing Last Reference
(’Memory Leak’)

NC

Can be partially checked by adapting the stubs for allocation and deal-
location functions.

404 Improper Resource Shutdown or Release NC

For OSEK, Invalid calls to OSEK system services

411 Resource Locking Problems NC

continues on the next page. . .

QA-MISRA Compliance Matrices 11

Chapter 2: Common Weakness Enumeration – CWE

Common Weakness Enumeration – CWE Support

. . . continued

Invalid usage of concurrency primitives

415 Double Free P

Invalid pointer for dynamic reallocation or free

416 Use After Free NC

Invalid dereference

426 Untrusted Search Path NC

427 Uncontrolled Search Path Element NC

434 Unrestricted Upload of File with Dangerous Type NC

456 Missing Initialization of a Variable P

Uninitialized variable

457 Use of Uninitialized Variable P

Uninitialized variable

466 Return of Pointer Value Outside of Expected Range NC

467 Use of sizeof() on a Pointer Type P

468 Incorrect Pointer Scaling P

470 Use of Externally-Controlled Input to Select Classes or Code (’Un-
safe Reflection’)

NC

471 Modification of Assumed-Immutable Data (MAID) NC

Attempt to write to a constant

474 Use of Function with Inconsistent Implementations NC

475 Undefined Behavior for Input to API NC

476 NULL Pointer Dereference NC

Invalid dereference

477 Use of Obsolete Functions NC

Can be checked by suitable stubs for the corresponding functions.

478 Missing Default Case in Switch Statement E

MISRA rule M.15.0

481 Assigning instead of Comparing P

continues on the next page. . .

12 QA Systems GmbH

Chapter 2: Common Weakness Enumeration – CWE

Common Weakness Enumeration – CWE Support

. . . continued

482 Comparing instead of Assigning NC

494 Download of Code Without Integrity Check NC

497 Exposure of System Data to an Unauthorized Control Sphere NC

Astrée provides the taint analysis that can track untrusted data

526 Information Exposure Through Environmental Variables NC

532 Information Exposure Through Log Files NC

535 Information Exposure Through Shell Error Message NC

547 Use of Hard-coded, Security-relevant Constants NC

558 Use of getlogin() in Multithreaded Application P

Use of bad function

560 Use of umask() with chmod-style Argument NC

561 Dead Code P

562 Return of Stack Variable Address NC

563 Assignment to Variable without Use (’Unused Variable’) P

566 Authorization Bypass Through User-Controlled SQL Primary Key NC

567 Unsynchronized Access to Shared Data in a Multithreaded Context NC

Read/Write data race, Write/Write data race

573 Improper Following of Specification by Caller NC

Specific messages for the C library and OSEK services

587 Assignment of a Fixed Address to a Pointer NC

When that pointer is used, Incorrect dereference

588 Attempt to Access Child of a Non-structure Pointer NC

Parsing error

591 Sensitive Data Storage in Improperly Locked Memory NC

601 URL Redirection to Untrusted Site (’Open Redirect’) NC

606 Unchecked Input for Loop Condition NC

Astrée provides the taint analysis that can track untrusted data

611 Improper Restriction of XML External Entity Reference (’XXE’) NC

continues on the next page. . .

QA-MISRA Compliance Matrices 13

Chapter 2: Common Weakness Enumeration – CWE

Common Weakness Enumeration – CWE Support

. . . continued

Astrée provides the taint analysis that can track untrusted data

615 Information Exposure Through Comments NC

628 Function Call with Incorrectly Specified Arguments NC

639 Authorization Bypass Through User-Controlled Key NC

643 Improper Neutralization of Data within XPath Expressions
(’XPath Injection’)

NC

Astrée provides the taint analysis that can track untrusted data

662 Improper Synchronization NC

Read/Write data race, Write/Write data race

663 Use of a Non-reentrant Function in a Concurrent Context NC

Read/Write data race, Write/Write data race

665 Improper Initialization P

Use of uninitialized variable,
RTE following the wrong initialization

666 Operation on Resource in Wrong Phase of Lifetime NC

Can be checked by suitable stubs for the corresponding functions.

667 Improper Locking NC

Read/Write data race, Write/Write data race

672 Operation on a Resource after Expiration or Release NC

Invalid dereference,
Invalid calls to OSEK system services

676 Use of Potentially Dangerous Function P

Use of bad function

680 Integer Overflow to Buffer Overflow NC

Overflow in arithmetic, followed by Possible overflow upon dereference

681 Incorrect Conversion between Numeric Types NC

Overflow in conversion

682 Incorrect Calculation NC

RTE consequences of the incorrect calculation

continues on the next page. . .

14 QA Systems GmbH

Chapter 2: Common Weakness Enumeration – CWE

Common Weakness Enumeration – CWE Support

. . . continued

685 Function Call With Incorrect Number of Arguments P

Function call with wrong number of arguments

686 Function Call With Incorrect Argument Type P

unhandled or invalid cast in gen_cast, Wrong parameter type in a func-
tion call

687 Function Call With Incorrectly Specified Argument Value NC

688 Function Call With Incorrect Variable or Reference as Argument NC

690 Unchecked Return Value to NULL Pointer Dereference NC

Invalid dereference

691 Insufficient Control Flow Management NC

696 Incorrect Behavior Order NC

704 Incorrect Type Conversion or Cast NC

Overflow in conversion

732 Incorrect Permission Assignment for Critical Resource NC

733 Compiler Optimization Removal or Modification of Security-
critical Code

NC

754 Improper Check for Unusual or Exceptional Conditions NC

755 Improper Handling of Exceptional Conditions NC

759 Use of a One-Way Hash without a Salt NC

Can be checked by suitable stubs for the corresponding functions.

760 Use of a One-Way Hash with a Predictable Salt NC

761 Free of Pointer not at Start of Buffer P

Invalid pointer for dynamic reallocation or free

763 Release of Invalid Pointer or Reference NC

764 Multiple Locks of a Critical Resource NC

Invalid usage of concurrency primitives

765 Multiple Unlocks of a Critical Resource NC

Invalid usage of concurrency primitives

continues on the next page. . .

QA-MISRA Compliance Matrices 15

Chapter 2: Common Weakness Enumeration – CWE

Common Weakness Enumeration – CWE Support

. . . continued

767 Access to Critical Private Variable via Public Method NC

Astrée provides the taint analysis that can track untrusted data

770 Allocation of Resources Without Limits or Throttling NC

780 Use of RSA Algorithm without OAEP NC

783 Operator Precedence Logic Error NC

Can be checked using the rule Misra M2012.12.1

785 Use of Path Manipulation Function without Maximum-sized
Buffer

NC

message corresponding to the buffer overflow

786 Access of Memory Location Before Start of Buffer NC

Possible overflow upon dereference

787 Out-of-bounds Write NC

Possible overflow upon dereference

789 Uncontrolled Memory Allocation NC

Astrée provides the taint analysis that can track untrusted data

798 Use of Hard-coded Credentials NC

805 Buffer Access with Incorrect Length Value NC

Possible overflow upon dereference

806 Buffer Access Using Size of Source Buffer NC

Possible overflow upon dereference

807 Reliance on Untrusted Inputs in a Security Decision NC

Astrée provides the taint analysis that can track untrusted data

822 Untrusted Pointer Dereference NC

Astrée provides the taint analysis that can track untrusted data

823 Use of Out-of-range Pointer Offset P

Incorrect field dereference, Out-of-bound array access, Dereference of
null or invalid pointer, Possible overflow upon derefenrece

824 Access of Uninitialized Pointer P

continues on the next page. . .

16 QA Systems GmbH

Chapter 2: Common Weakness Enumeration – CWE

Common Weakness Enumeration – CWE Support

. . . continued

Invalid dereference, Uninitialized variable

825 Expired Pointer Dereference NC

Invalid dereference

829 Inclusion of Functionality from Untrusted Control Sphere NC

831 Signal Handler Function Associated with Multiple Signals NC

Can be checked by suitable stubs for the corresponding functions.

832 Unlock of a Resource that is not Locked NC

Invalid usage of concurrency primitives

833 Deadlock NC

Astrée reports all potential data races and deadlocks

835 Loop with Unreachable Exit Condition (’Infinite Loop’) NC

Loop never terminates

862 Missing Authorization NC

863 Incorrect Authorization NC

908 Use of Uninitialized Resource P

Uninitialized variable

916 Use of Password Hash With Insufficient Computational Effort NC

QA-MISRA Compliance Matrices 17

3 SEI CERT C/C++ Coding Standard

3.1 SEI CERT C Coding Standard

Coding guideline checks can be executed with or without runtime error analysis. Coupling QA-MISRA
with Astrée’s runtime error analysis can raise the degree to which a coding guideline is supported.

The following table shows the degree of rule support for each rule assuming no coupling. Detailed
information on the degree of support when coupled with Astrée can be found in the dedicated a3 for
C/C++ Compliance documentation.

In total, 103 rules of the rule set – i. e. 36% of all 285 rules – are checked:

All Rules Rules Recommendations
fully checked 44 (15 %) 18 (18 %) 26 (13 %)
partially checked 47 (16 %) 29 (29 %) 18 (9 %)
implicitly checkable 12 (4 %) 6 (6 %) 6 (3 %)
not checked 182 (63 %) 46 (46 %) 136 (73 %)

Preprocessor (PRE) Support

PRE.0 Prefer inline or static functions to function-like macros FC

The exceptions (PRE00-C-EX1..5) stated in this rule are not considered
and will cause false alarms.

PRE.1 Use parentheses within macros around parameter names FC

Exception PRE01-C-EX1 is not considered by this check and will cause
false alarms.

PRE.2 Macro replacement lists should be parenthesized NC

Similar to MISRA-C:2004 Rule 19.4

PRE.3 Prefer typedefs to defines for encoding non-pointer types NC

PRE.4 Do not reuse a standard header file name NC

PRE.5 Understand macro replacement when concatenating tokens or
performing stringification

NC

PRE.6 Enclose header files in an inclusion guard FC

continues on the next page. . .

18 QA Systems GmbH

Chapter 3: SEI CERT C/C++ Coding Standard
3.1 SEI CERT C Coding Standard

Preprocessor (PRE) Support

. . . continued

PRE.7 Avoid using repeated question marks FC+E

PRE.8 Guarantee that header file names are unique NC

PRE.9 Do not replace secure functions with deprecated or obsolescent
functions

NC

Can be checked by providing stubs for deprecated or obsolescent func-
tions.

PRE.10 Wrap multistatement macros in a do-while loop NC

Similar to MISRA-C:2004 Rule 19.4

PRE.11 Do not conclude macro definitions with a semicolon FC+E

PRE.12 Do not define unsafe macros PC

PRE.13 Use the Standard predefined macros to test for versions and fea-
tures.

NC

PRE.30 Do not create a universal character name through concatenation FC+E

PRE.31 Avoid side effects in arguments to unsafe macros PC

PRE.32 Do not use preprocessor directives in invocations of function-like
macros

FC+E

Declarations and Initialization (DCL) Support

DCL.0 Const-qualify immutable objects PC

DCL.1 Do not reuse variable names in subscopes S

MISRA C:2012 Rule 5.3

DCL.2 Use visually distinct identifiers NC

MISRA C:2012 Dir 4.5

DCL.3 Use a static assertion to test the value of a constant expression NC

DCL.4 Do not declare more than one variable per declaration NC

DCL.5 Use typedefs of non-pointer types only FC+E

DCL.6 Use meaningful symbolic constants to represent literal values NC

DCL.7 Include the appropriate type information in function declarators PC

continues on the next page. . .

QA-MISRA Compliance Matrices 19

Chapter 3: SEI CERT C/C++ Coding Standard
3.1 SEI CERT C Coding Standard

Declarations and Initialization (DCL) Support

. . . continued

The type-correctness for function pointers is undecidable in general
and not checked.

DCL.8 Properly encode relationships in constant definitions NC

DCL.9 Declare functions that return errno with a return type of errno_t NC

DCL.10 Maintain the contract between the writer and caller of variadic
functions

NC

Astrée supports the implementation of stubs for variadic functions that
verify the contract.

DCL.11 Understand the type issues associated with variadic functions NC

DCL.12 Implement abstract data types using opaque types NC

DCL.13 Declare function parameters that are pointers to values not
changed by the function as const

FC+E

DCL.15 Declare file-scope objects or functions that do not need external
linkage as static

FC+E

DCL.16 Use "L", not "l", to indicate a long value FC+E

DCL.17 Beware of miscompiled volatile-qualified variables NC

DCL.18 Do not begin integer constants with 0 when specifying a decimal
value

FC+E

DCL.19 Minimize the scope of variables and functions PC

DCL.20 Explicitly specify void when a function accepts no arguments FC+E

DCL.21 Understand the storage of compound literals NC

DCL.22 Use volatile for data that cannot be cached NC

DCL.23 Guarantee that mutually visible identifiers are unique S

MISRA C:2012 Rules 5.1-5

DCL.30 Declare objects with appropriate storage durations PC

DCL.31 Declare identifiers before using them FC+E

DCL.36 Do not declare an identifier with conflicting linkage classifications PC

DCL.37 Do not declare or define a reserved identifier PC

DCL.38 Use the correct syntax when declaring a flexible array member NC

continues on the next page. . .

20 QA Systems GmbH

Chapter 3: SEI CERT C/C++ Coding Standard
3.1 SEI CERT C Coding Standard

Declarations and Initialization (DCL) Support

. . . continued

Astrée reports violations of this guideline as array-out-of-bounds
alarms.

DCL.39 Avoid information leakage when passing a structure across a
trust boundary

PC

DCL.40 Do not create incompatible declarations of the same function or
object

FC+E

DCL.41 Do not declare variables inside a switch statement before the first
case label

FC+E

Expressions (EXP) Support

EXP.0 Use parentheses for precedence of operation NC

Similar to MISRA C:2012 Rule 12.1

EXP.2 Be aware of the short-circuit behavior of the logical AND and OR
operators

FC

EXP.3 Do not assume the size of a structure is the sum of the sizes of its
members

NC

Astrée reports accesses outside the bounds of allocated memory.

EXP.5 Do not cast away a const qualification FC+E

EXP.7 Do not diminish the benefits of constants by assuming their values
in expressions

NC

EXP.8 Ensure pointer arithmetic is used correctly NC

Astrée reports potential runtime errors resulting from invalid pointer
arithmetics.

EXP.9 Use sizeof to determine the size of a type or variable PC

EXP.10 Do not depend on the order of evaluation of subexpressions or
the order in which side effects take place

PC

File modifications are not taken into account.

EXP.11 Do not make assumptions regarding the layout of structures with
bit-fields

NC

Astrée will report potential runtime errors resulting from incorrect
assumptions.

continues on the next page. . .

QA-MISRA Compliance Matrices 21

Chapter 3: SEI CERT C/C++ Coding Standard
3.1 SEI CERT C Coding Standard

Expressions (EXP) Support

. . . continued

EXP.12 Do not ignore values returned by functions PC

EXP.13 Treat relational and equality operators as if they were nonasso-
ciative

FC+E

EXP.14 Beware of integer promotion when performing bitwise opera-
tions on integer types smaller than int

NC

Resulting overflows or other undefined behavior is reported.

EXP.15 Do not place a semicolon on the same line as an if, for, or while
statement

FC+E

EXP.16 Do not compare function pointers to constant values PC

EXP.19 Use braces for the body of an if, for, or while statement FC+E

EXP.20 Perform explicit tests to determine success, true and false, and
equality

NC

MISRA-C:2004 Rule 13.2

EXP.30 Do not depend on the order of evaluation for side effects FC

EXP.32 Do not access a volatile object through a nonvolatile reference S

MISRA C:2012 Rule 11.8

EXP.33 Do not read uninitialized memory PC

EXP.34 Do not dereference null pointers NC

EXP.35 Do not modify objects with temporary lifetime PC

EXP.36 Do not cast pointers into more strictly aligned pointer types FC+E

EXP.37 Call functions with the correct number and type of arguments PC

EXP.39 Do not access a variable through a pointer of an incompatible
type

NC

EXP.40 Do not modify constant objects PC

EXP.42 Do not compare padding data PC

EXP.43 Avoid undefined behavior when using restrict-qualified pointers S

Full check for MISRA C:2012 Rule 8.14 (do not use restrict)

EXP.44 Do not rely on side effects in operands to sizeof, _Alignof, or
_Generic

FC

MISRA C:2012 Rule 13.6

continues on the next page. . .

22 QA Systems GmbH

Chapter 3: SEI CERT C/C++ Coding Standard
3.1 SEI CERT C Coding Standard

Expressions (EXP) Support

. . . continued

EXP.45 Do not perform assignments in selection statements FC+E

EXP.46 Do not use a bitwise operator with a Boolean-like operand S

Subset of MISRA C:2012 Rule 10.1

Integers (INT) Support

INT.0 Understand the data model used by your implementation(s) NC

INT.1 Use rsize_t or size_t for all integer values representing the size of
an object

NC

INT.2 Understand integer conversion rules NC

Astrée reports all resulting overflows and keeps track of all integer
values.

INT.4 Enforce limits on integer values originating from tainted sources NC

Supported by Astrée’s taint analysis.

INT.5 Do not use input functions to convert character data if they cannot
handle all possible inputs

NC

INT.7 Use only explicitly signed or unsigned char type for numeric
values

S

MISRA C:2012 Rule 10.1, MISRA C:2012 Rule 10.3, MISRA C:2012 Rule
10.4

INT.8 Verify that all integer values are in range NC

INT.9 Ensure enumeration constants map to unique values FC+E

INT.10 Do not assume a positive remainder when using the % operator NC

INT.12 Do not make assumptions about the type of a plain int bit-field
when used in an expression

FC

INT.13 Use bitwise operators only on unsigned operands FC+E

INT.14 Avoid performing bitwise and arithmetic operations on the same
data

NC

INT.15 Use intmax_t or uintmax_t for formatted IO on programmer-
defined integer types

NC

INT.16 Do not make assumptions about representation of signed integers PC

continues on the next page. . .

QA-MISRA Compliance Matrices 23

Chapter 3: SEI CERT C/C++ Coding Standard
3.1 SEI CERT C Coding Standard

Integers (INT) Support

. . . continued

INT.17 Define integer constants in an implementation-independent man-
ner

NC

INT.18 Evaluate integer expressions in a larger size before comparing
or assigning to that size

NC

Similar to M2012.10.6

INT.30 Ensure that unsigned integer operations do not wrap NC

The check for this rule currently does not consider sign information.

INT.31 Ensure that integer conversions do not result in lost or misinter-
preted data

S

Related to MISRA C:2012 Rules 10.1, 10.3, 10.4, 10.6 and 10.7

INT.32 Ensure that operations on signed integers do not result in over-
flow

NC

The check for this rule currently does not consider sign information.

INT.33 Ensure that division and remainder operations do not result in
divide-by-zero errors

NC

INT.34 Do not shift an expression by a negative number of bits or by
greater than or equal to the number of bits that exist in the
operand

PC

INT.35 Use correct integer precisions NC

Astrée reports potential overflows due to insufficient precision.

INT.36 Converting a pointer to integer or integer to pointer FC+E

Floating Point (FLP) Support

FLP.0 Understand the limitations of floating-point numbers NC

FLP.1 Take care in rearranging floating-point expressions NC

FLP.2 Avoid using floating-point numbers when precise computation is
needed

PC

FLP.3 Detect and handle floating-point errors NC

FLP.4 Check floating-point inputs for exceptional values NC

Astrée reports potential runtime errors resulting from missing checks
for exceptional values.

continues on the next page. . .

24 QA Systems GmbH

Chapter 3: SEI CERT C/C++ Coding Standard
3.1 SEI CERT C Coding Standard

Floating Point (FLP) Support

. . . continued

FLP.5 Do not use denormalized numbers NC

FLP.6 Convert integers to floating point for floating-point operations NC

This rules aims to prevent truncations and overflows. All possible
overflows are reported by Astrée.

FLP.7 Cast the return value of a function that returns a floating-point
type

NC

FLP.30 Do not use floating-point variables as loop counters FC+E

FLP.32 Prevent or detect domain and range errors in math functions PC

FLP.34 Ensure that floating-point conversions are within range of the
new type

NC

Astrée reports potential overflows.

FLP.36 Preserve precision when converting integral values to floating-
point type

NC

Astrée keeps track of all floating point rounding errors and loss of
precision and will report code defects resulting from them.

FLP.37 Do not use object representations to compare floating-point val-
ues

PC

Arrays (ARR) Support

ARR.0 Understand how arrays work NC

ARR.1 Do not apply the sizeof operator to a pointer when taking the size
of an array

FC+E

ARR.2 Explicitly specify array bounds, even if implicitly defined by an
initializer

PC

ARR.30 Do not form or use out-of-bounds pointers or array subscripts PC

ARR.32 Ensure size arguments for variable length arrays are in a valid
range

NC

ARR.36 Do not subtract or compare two pointers that do not refer to the
same array

PC

There is no warning when subtracting pointers that point to different
fields of the same structure.

continues on the next page. . .

QA-MISRA Compliance Matrices 25

Chapter 3: SEI CERT C/C++ Coding Standard
3.1 SEI CERT C Coding Standard

Arrays (ARR) Support

. . . continued

ARR.37 Do not add or subtract an integer to a pointer to a non-array
object

S

MISRA-C:2004 Rule 17.4

ARR.38 Guarantee that library functions do not form invalid pointers NC

ARR.39 Do not add or subtract a scaled integer to a pointer PC

Characters and Strings (STR) Support

STR.0 Represent characters using an appropriate type S

MISRA C:2012 Rule 10.1, MISRA-C:2004 Rule 6.1

STR.1 Adopt and implement a consistent plan for managing strings NC

STR.2 Sanitize data passed to complex subsystems NC

Supported by Astrée’s taint analysis.

STR.3 Do not inadvertently truncate a string NC

STR.4 Use plain char for characters in the basic character set S

MISRA-C:2004 Rule 6.1

STR.5 Use pointers to const when referring to string literals FC+E

STR.6 Do not assume that strtok() leaves the parse string unchanged NC

STR.7 Use the bounds-checking interfaces for string manipulation NC

Can be checked with appropriate analysis stubs.

STR.8 Use managed strings for development of new string manipulation
code

NC

STR.9 Don’t assume numeric values for expressions with type plain
character

S

MISRA C:2012 Rule 10.1

STR.10 Do not concatenate different type of string literals FC+E

STR.11 Do not specify the bound of a character array initialized with a
string literal

NC

Astrée can detect subsequent code defects that this rule aims to prevent.

STR.30 Do not attempt to modify string literals PC

continues on the next page. . .

26 QA Systems GmbH

Chapter 3: SEI CERT C/C++ Coding Standard
3.1 SEI CERT C Coding Standard

Characters and Strings (STR) Support

. . . continued

STR.31 Guarantee that storage for strings has sufficient space for charac-
ter data and the null terminator

NC

This is checked by Astrée up to omitted string termination

STR.32 Do not pass a non-null-terminated character sequence to a library
function that expects a string

NC

Astrée supports the implementation of library stubs to verify this guide-
line.

STR.34 Cast characters to unsigned char before converting to larger inte-
ger sizes

FC+E

STR.37 Arguments to character-handling functions must be repre-
sentable as an unsigned char

PC

The non-standard functions isascii() and toascii() are not covered.

STR.38 Do not confuse narrow and wide character strings and functions PC

Memory Management (MEM) Support

MEM.0 Allocate and free memory in the same module, at the same level
of abstraction

NC

MEM.1 Store a new value in pointers immediately after free() NC

Alarms about usage of invalid pointers

MEM.2 Immediately cast the result of a memory allocation function call
into a pointer to the allocated type

PC

MEM.3 Clear sensitive information stored in reusable resources NC

MEM.4 Beware of zero-length allocations NC

Stub implementations of allocation functions can verify that their size
argument is greater than zero.

MEM.5 Avoid large stack allocations NC

MEM.6 Ensure that sensitive data is not written out to disk NC

MEM.7 Ensure that the arguments to calloc(), when multiplied, do not
wrap

NC

Stub implementation of calloc can verify this.

MEM.10 Define and use a pointer validation function NC

continues on the next page. . .

QA-MISRA Compliance Matrices 27

Chapter 3: SEI CERT C/C++ Coding Standard
3.1 SEI CERT C Coding Standard

Memory Management (MEM) Support

. . . continued

MEM.11 Do not assume infinite heap space NC

MEM.12 Consider using a goto chain when leaving a function on error
when using and releasing resources

NC

MEM.30 Do not access freed memory NC

Astrée reports accesses to freed dynamically allocated memory.

MEM.31 Free dynamically allocated memory when no longer needed NC

Can be partially checked by adapting the stubs for allocation and deal-
location functions.

MEM.33 Allocate and copy structures containing a flexible array member
dynamically

FC+E

MEM.34 Only free memory allocated dynamically PC

MEM.35 Allocate sufficient memory for an object PC

MEM.36 Do not modify the alignment of objects by calling realloc() NC

Input Output (FIO) Support

FIO.1 Be careful using functions that use file names for identification NC

FIO.2 Canonicalize path names originating from tainted sources NC

FIO.3 Do not make assumptions about fopen() and file creation NC

FIO.5 Identify files using multiple file attributes NC

FIO.6 Create files with appropriate access permissions NC

FIO.8 Take care when calling remove() on an open file NC

FIO.9 Be careful with binary data when transferring data across sys-
tems

NC

FIO.10 Take care when using the rename() function NC

FIO.11 Take care when specifying the mode parameter of fopen() NC

FIO.13 Never push back anything other than one read character NC

FIO.14 Understand the difference between text mode and binary mode
with file streams

NC

FIO.15 Ensure that file operations are performed in a secure directory NC

continues on the next page. . .

28 QA Systems GmbH

Chapter 3: SEI CERT C/C++ Coding Standard
3.1 SEI CERT C Coding Standard

Input Output (FIO) Support

. . . continued

FIO.17 Do not rely on an ending null character when using fread() NC

FIO.18 Never expect fwrite() to terminate the writing process at a null
character

NC

FIO.19 Do not use fseek() and ftell() to compute the size of a regular file NC

FIO.20 Avoid unintentional truncation when using fgets() or fgetws() NC

FIO.21 Do not create temporary files in shared directories NC

FIO.22 Close files before spawning processes NC

FIO.23 Do not exit with unflushed data in stdout or stderr NC

FIO.24 Do not open a file that is already open NC

FIO.30 Exclude user input from format strings NC

Astrée supports the implementation of stubs and taint analysis to verify
this guideline.

FIO.32 Do not perform operations on devices that are only appropriate
for files

NC

FIO.34 Distinguish between characters read from a file and EOF or WEOF NC

FIO.37 Do not assume that fgets() or fgetws() returns a nonempty string
when successful

NC

Code defects stemming from returned (empty) strings will be reported.

FIO.38 Do not copy a FILE object PC

FIO.39 Do not alternately input and output from a stream without an
intervening flush or positioning call

NC

Can be checked by providing suitable stub implementations for the
corresponding functions.

FIO.40 Reset strings on fgets() or fgetws() failure NC

FIO.41 Do not call getc(), putc(), getwc(), or putwc() with a stream argu-
ment that has side effects

FC

FIO.42 Close files when they are no longer needed NC

Can be checked by providing suitable stub implementations for the
corresponding functions.

FIO.44 Only use values for fsetpos() that are returned from fgetpos() NC

continues on the next page. . .

QA-MISRA Compliance Matrices 29

Chapter 3: SEI CERT C/C++ Coding Standard
3.1 SEI CERT C Coding Standard

Input Output (FIO) Support

. . . continued

FIO.45 Avoid TOCTOU race conditions while accessing files NC

FIO.46 Do not access a closed file NC

Supported via stubbing and taint analysis.

FIO.47 Use valid format strings NC

Astrée supports the implementation of stubs to verify this guideline.

Environment (ENV) Support

ENV.1 Do not make assumptions about the size of an environment vari-
able

NC

ENV.2 Beware of multiple environment variables with the same effective
name

NC

ENV.3 Sanitize the environment when invoking external programs NC

ENV.30 Do not modify the object referenced by the return value of certain
functions

PC

ENV.31 Do not rely on an environment pointer following an operation
that may invalidate it

NC

ENV.32 All exit handlers must return normally NC

ENV.33 Do not call system() FC+E

Signals (SIG) Support

SIG.0 Mask signals handled by noninterruptible signal handlers NC

SIG.1 Understand implementation-specific details regarding signal han-
dler persistence

NC

SIG.2 Avoid using signals to implement normal functionality NC

SIG.30 Call only asynchronous-safe functions within signal handlers PC

SIG.31 Do not access shared objects in signal handlers PC

SIG.34 Do not call signal() from within interruptible signal handlers PC

SIG.35 Do not return from a computational exception signal handler NC

30 QA Systems GmbH

Chapter 3: SEI CERT C/C++ Coding Standard
3.1 SEI CERT C Coding Standard

Error Handling (ERR) Support

ERR.0 Adopt and implement a consistent and comprehensive error-
handling policy

NC

ERR.1 Use ferror() rather than errno to check for FILE stream errors NC

ERR.2 Avoid in-band error indicators NC

ERR.3 Use runtime-constraint handlers when calling the bounds-
checking interfaces

NC

ERR.4 Choose an appropriate termination strategy NC

ERR.5 Application-independent code should provide error detection
without dictating error handling

NC

ERR.6 Understand the termination behavior of assert() and abort() NC

ERR.7 Prefer functions that support error checking over equivalent
functions that don’t

FC+E

ERR.30 Set errno to zero before calling a library function known to set
errno, and check errno only after the function returns a value
indicating failure

NC

ERR.32 Do not rely on indeterminate values of errno NC

ERR.33 Detect and handle standard library errors PC

ERR.34 Detect errors when converting a string to a number NC

Application Programming Interfaces (API) Support

API.0 Functions should validate their parameters NC

API.1 Avoid laying out strings in memory directly before sensitive data NC

API.2 Functions that read or write to or from an array should take an
argument to specify the source or target size

NC

API.3 Create consistent interfaces and capabilities across related func-
tions

NC

API.4 Provide a consistent and usable error-checking mechanism NC

API.5 Use conformant array parameters NC

API.7 Enforce type safety NC

API.8 Avoid parameter names in a function prototype FC+E

API.9 Compatible values should have the same type NC

continues on the next page. . .

QA-MISRA Compliance Matrices 31

Chapter 3: SEI CERT C/C++ Coding Standard
3.1 SEI CERT C Coding Standard

Application Programming Interfaces (API) Support

. . . continued

API.10 APIs should have security options enabled by default NC

Concurrency (CON) Support

CON.1 Acquire and release synchronization primitives in the same mod-
ule, at the same level of abstraction

NC

CON.2 Do not use volatile as a synchronization primitive NC

CON.3 Ensure visibility when accessing shared variables NC

CON.4 Join or detach threads even if their exit status is unimportant NC

CON.5 Do not perform operations that can block while holding a lock NC

CON.6 Ensure that every mutex outlives the data it protects NC

CON.7 Ensure that compound operations on shared variables are atomic NC

CON.8 Do not assume that a group of calls to independently atomic
methods is atomic

NC

CON.9 Avoid the ABA problem when using lock-free algorithms NC

CON.30 Clean up thread-specific storage NC

CON.31 Do not destroy a mutex while it is locked NC

CON.32 Prevent data races when accessing bit-fields from multiple
threads

NC

Astrée reports all potential data races and deadlocks.

CON.33 Avoid race conditions when using library functions NC

CON.34 Declare objects shared between threads with appropriate storage
durations

NC

CON.35 Avoid deadlock by locking in a predefined order NC

Astrée reports all potential deadlocks.

CON.36 Wrap functions that can spuriously wake up in a loop NC

CON.37 Do not call signal() in a multithreaded program FC+E

CON.38 Preserve thread safety and liveness when using condition vari-
ables

NC

CON.39 Do not join or detach a thread that was previously joined or
detached

NC

continues on the next page. . .

32 QA Systems GmbH

Chapter 3: SEI CERT C/C++ Coding Standard
3.1 SEI CERT C Coding Standard

Concurrency (CON) Support

. . . continued

CON.40 Do not refer to an atomic variable twice in an expression PC

CON.41 Wrap functions that can fail spuriously in a loop NC

Miscellaneous (MSC) Support

MSC.0 Compile cleanly at high warning levels NC

MSC.1 Strive for logical completeness PC

MSC.4 Use comments consistently and in a readable fashion PC

MSC.5 Do not manipulate time_t typed values directly NC

MSC.6 Beware of compiler optimizations NC

MSC.7 Detect and remove dead code PC

Astrée reports unreachable code. Rules CWE.561 and M2012.2.2 report
dead code.

MSC.9 Character encoding: Use subset of ASCII for safety NC

MSC.10 Character encoding: UTF8-related issues NC

MSC.11 Incorporate diagnostic tests using assertions NC

MSC.12 Detect and remove code that has no effect or is never executed PC

Violations of this rule are reported for code that cannot be reached by
the analyzer. Such code is definitely unreachable except if the analysis
terminated prematurely because of an error. It cannot be guaranteed
that all unreachable code is reported. Writes without read are not
considered. Expressions are tested for side effects as a whole, thus dead
subexpressions are not reported.

MSC.13 Detect and remove unused values NC

MSC.14 Do not introduce unnecessary platform dependencies NC

MSC.15 Do not depend on undefined behavior NC

Astrée reports undefined behavior.

MSC.17 Finish every set of statements associated with a case label with a
break statement

FC+E

Exceptions MSC17-EX1 and MSC17-EX2 are not considered and will
cause alarms.

continues on the next page. . .

QA-MISRA Compliance Matrices 33

Chapter 3: SEI CERT C/C++ Coding Standard
3.1 SEI CERT C Coding Standard

Miscellaneous (MSC) Support

. . . continued

MSC.18 Be careful while handling sensitive data, such as passwords, in
program code

NC

MSC.19 For functions that return an array, prefer returning an empty
array over a null value

NC

MSC.20 Do not use a switch statement to transfer control into a complex
block

FC+E

MSC.21 Use robust loop termination conditions NC

Astrée reports potential infinite loops.

MSC.22 Use the setjmp(), longjmp() facility securely NC

MSC.23 Beware of vendor-specific library and language differences NC

Astrée reports non-standard language elements.

MSC.24 Do not use deprecated or obsolescent functions PC

MSC.30 Do not use the rand() function for generating pseudorandom
numbers

FC+E

MSC.32 Properly seed pseudorandom number generators NC

Can be checked by suitable stubs for the corresponding library func-
tions.

MSC.33 Do not pass invalid data to the asctime() function NC

Can be checked by a suitable stub for asctime().

MSC.37 Ensure that control never reaches the end of a non-void function FC

MSC.38 Do not treat a predefined identifier as an object if it might only
be implemented as a macro

S

MSC.39 Do not call va_arg() on a va_list that has an indeterminate value NC

MSC.40 Do not violate constraints PC

The C frontend rejects in large part constraint violations.

POSIX (POS) Support

POS.1 Check for the existence of links when dealing with files NC

POS.2 Follow the principle of least privilege NC

POS.4 Avoid using PTHREAD_MUTEX_NORMAL type mutex locks NC

continues on the next page. . .

34 QA Systems GmbH

Chapter 3: SEI CERT C/C++ Coding Standard
3.2 SEI CERT C++ Coding Standard

POSIX (POS) Support

. . . continued

POS.5 Limit access to files by creating a jail NC

Microsoft Windows (WIN) Support

WIN.0 Be specific when dynamically loading libraries NC

WIN.1 Do not forcibly terminate execution PC

WIN.2 Restrict privileges when spawning child processes NC

WIN.3 Understand HANDLE inheritance NC

WIN.4 Consider encrypting function pointers NC

3.2 SEI CERT C++ Coding Standard

Coding guideline checks can be executed with or without runtime error analysis. Coupling QA-MISRA
with Astrée’s runtime error analysis can raise the degree to which a coding guideline is supported.

The following table shows the degree of rule support for each rule assuming no coupling. Detailed
information on the degree of support when coupled with Astrée can be found in the dedicated a3 for
C/C++ Compliance documentation.

In total, 47 rules of the rule set – i. e. 28% of all 163 rules – are checked:

All Rules
fully checked 18 (11 %)
partially checked 29 (17 %)
implicitly checkable 0 (0 %)
not checked 116 (71 %)

Preprocessor (PRE) Support

PRE.30C Do not create a universal character name through concatenation NC

PRE.31C Avoid side effects in arguments to unsafe macros NC

PRE.32C Do not use preprocessor directives in invocations of function-like
macros

NC

QA-MISRA Compliance Matrices 35

Chapter 3: SEI CERT C/C++ Coding Standard
3.2 SEI CERT C++ Coding Standard

Declarations and Initialization (DCL) Support

DCL.30C Declare objects with appropriate storage durations PC

DCL.39C Avoid information leakage in structure padding NC

DCL.40C Do not create incompatible declarations of the same function or
object

PC

DCL.50 Do not define a C-style variadic function FC+E

DCL.51 Do not declare or define a reserved identifier PC

DCL.52 Never qualify a reference type with const or volatile NC

DCL.53 Do not write syntactically ambiguous declarations NC

DCL.54 Overload allocation and deallocation functions as a pair in the
same scope

PC

DCL.55 Avoid information leakage when passing a class object across a
trust boundary

NC

DCL.56 Avoid cycles during initialization of static objects NC

DCL.57 Do not let exceptions escape from destructors or deallocation
functions

FC+E

DCL.58 Do not modify the standard namespaces NC

DCL.59 Do not define an unnamed namespace in a header file FC+E

DCL.60 Obey the one-definition rule PC

Expressions (EXP) Support

EXP.34C Do not dereference null pointers PC

EXP.35C Do not modify objects with temporary lifetime NC

EXP.36C Do not cast pointers into more strictly aligned pointer types NC

EXP.37C Call functions with the correct number and type of arguments NC

EXP.39C Do not access a variable through a pointer of an incompatible
type

NC

EXP.42C Do not compare padding data NC

EXP.45C Do not perform assignments in selection statements NC

EXP.46C Do not use a bitwise operator with a Boolean-like operand NC

EXP.47C Do not call va_arg with an argument of the incorrect type NC

continues on the next page. . .

36 QA Systems GmbH

Chapter 3: SEI CERT C/C++ Coding Standard
3.2 SEI CERT C++ Coding Standard

Expressions (EXP) Support

. . . continued

EXP.50 Do not depend on the order of evaluation for side effects NC

EXP.51 Do not delete an array through a pointer of the incorrect type NC

EXP.52 Do not rely on side effects in unevaluated operands PC

EXP.53 Do not read uninitialized memory PC

EXP.54 Do not access an object outside of its lifetime PC

EXP.55 Do not access a cv-qualified object through a cv-unqualified type PC

EXP.56 Do not call a function with a mismatched language linkage NC

EXP.57 Do not cast or delete pointers to incomplete classes FC+E

EXP.58 Pass an object of the correct type to va_start NC

EXP.59 Use offsetof() on valid types and members NC

EXP.60 Do not pass a nonstandard-layout type object across execution
boundaries

NC

EXP.61 A lambda object must not outlive any of its reference captured
objects

NC

EXP.62 Do not access the bits of an object representation that are not
part of the object’s value representation

NC

EXP.63 Do not rely on the value of a moved-from object NC

Integers (INT) Support

INT.30C Ensure that unsigned integer operations do not wrap NC

INT.31C Ensure that integer conversions do not result in lost or misinter-
preted data

NC

INT.32C Ensure that operations on signed integers do not result in over-
flow

NC

INT.33C Ensure that division and remainder operations do not result in
divide-by-zero errors

PC

INT.34C Do not shift an expression by a negative number of bits or by
greater than or equal to the number of bits that exist in the
operand

NC

INT.35C Use correct integer precisions NC

continues on the next page. . .

QA-MISRA Compliance Matrices 37

Chapter 3: SEI CERT C/C++ Coding Standard
3.2 SEI CERT C++ Coding Standard

Integers (INT) Support

. . . continued

INT.36C Converting a pointer to integer or integer to pointer NC

INT.50 Do not cast to an out-of-range enumeration value PC

Floating Point (FLP) Support

FLP.30C Do not use floating-point variables as loop counters NC

FLP.32C Prevent or detect domain and range errors in math functions NC

FLP.34C Ensure that floating-point conversions are within range of the
new type

NC

FLP.36C Preserve precision when converting integral values to floating-
point type

NC

FLP.37C Do not use object representations to compare floating-point val-
ues

NC

Arrays (ARR) Support

ARR.30C Do not form or use out-of-bounds pointers or array subscripts PC

ARR.37C Do not add or subtract an integer to a pointer to a non-array
object

NC

ARR.38C Guarantee that library functions do not form invalid pointers NC

ARR.39C Do not add or subtract a scaled integer to a pointer NC

Containers (CTR) Support

CTR.50 Guarantee that container indices and iterators are within the
valid range

NC

CTR.51 Use valid references, pointers, and iterators to reference elements
of a container

NC

CTR.52 Guarantee that library functions do not overflow NC

CTR.53 Use valid iterator ranges NC

CTR.54 Do not subtract iterators that do not refer to the same container NC

continues on the next page. . .

38 QA Systems GmbH

Chapter 3: SEI CERT C/C++ Coding Standard
3.2 SEI CERT C++ Coding Standard

Containers (CTR) Support

. . . continued

CTR.55 Do not use an additive operator on an iterator if the result would
overflow

NC

CTR.56 Do not use pointer arithmetic on polymorphic objects NC

CTR.57 Provide a valid ordering predicate NC

CTR.58 Predicate function objects should not be mutable NC

Characters and Strings (STR) Support

STR.30C Do not attempt to modify string literals NC

STR.31C Guarantee that storage for strings has sufficient space for charac-
ter data and the null terminator

NC

STR.32C Do not pass a non-null-terminated character sequence to a library
function that expects a string

NC

STR.34C Cast characters to unsigned char before converting to larger inte-
ger sizes

NC

STR.37C Arguments to character-handling functions must be repre-
sentable as an unsigned char

NC

STR.38C Do not confuse narrow and wide character strings and functions NC

STR.50 Guarantee that storage for strings has sufficient space for charac-
ter data and the null terminator

PC

STR.51 Do not attempt to create a std::string from a null pointer NC

STR.52 Use valid references, pointers, and iterators to reference elements
of a basic_string

NC

STR.53 Range check element access NC

Memory Management (MEM) Support

MEM.30C Do not access freed memory PC

MEM.31C Free dynamically allocated memory when no longer needed PC

MEM.34C Only free memory allocated dynamically NC

MEM.35C Allocate sufficient memory for an object NC

continues on the next page. . .

QA-MISRA Compliance Matrices 39

Chapter 3: SEI CERT C/C++ Coding Standard
3.2 SEI CERT C++ Coding Standard

Memory Management (MEM) Support

. . . continued

MEM.36C Do not modify the alignment of objects by calling realloc() NC

MEM.50 Do not access freed memory PC

MEM.51 Properly deallocate dynamically allocated resources PC

MEM.52 Detect and handle memory allocation errors NC

MEM.53 Explicitly construct and destruct objects when manually manag-
ing object lifetime

NC

MEM.54 Provide placement new with properly aligned pointers to suffi-
cient storage capacity

PC

MEM.55 Honor replacement dynamic storage management requirements PC

MEM.56 Do not store an already-owned pointer value in an unrelated
smart pointer

NC

MEM.57 Avoid using default operator new for over-aligned types FC

Input Output (FIO) Support

FIO.30C Exclude user input from format strings NC

FIO.32C Do not perform operations on devices that are only appropriate
for files

NC

FIO.34C Distinguish between characters read from a file and EOF or WEOF NC

FIO.37C Do not assume that fgets() or fgetws() returns a nonempty string
when successful

NC

FIO.38C Do not copy a FILE object NC

FIO.39C Do not alternately input and output from a stream without an
intervening flush or positioning call

NC

FIO.40C Reset strings on fgets() or fgetws() failure NC

FIO.41C Do not call getc(), putc(), getwc(), or putwc() with a stream argu-
ment that has side effects

NC

FIO.42C Close files when they are no longer needed NC

FIO.44C Only use values for fsetpos() that are returned from fgetpos() NC

FIO.45C Avoid TOCTOU race conditions while accessing files NC

FIO.46C Do not access a closed file NC

continues on the next page. . .

40 QA Systems GmbH

Chapter 3: SEI CERT C/C++ Coding Standard
3.2 SEI CERT C++ Coding Standard

Input Output (FIO) Support

. . . continued

FIO.47C Use valid format strings NC

FIO.50 Do not alternately input and output from a file stream without
an intervening positioning call

NC

FIO.51 Close files when they are no longer needed NC

Environment (ENV) Support

ENV.30C Do not modify the object referenced by the return value of certain
functions

NC

ENV.31C Do not rely on an environment pointer following an operation
that may invalidate it

NC

ENV.32C All exit handlers must return normally NC

ENV.33C Do not call system() FC

ENV.34C Do not store pointers returned by certain functions NC

Signals (SIG) Support

SIG.31C Do not access shared objects in signal handlers NC

SIG.34C Do not call signal() from within interruptible signal handlers NC

SIG.35C Do not return from a computational exception signal handler NC

Exceptions and Error Handling (ERR) Support

ERR.30C Set errno to zero before calling a library function known to set
errno, and check errno only after the function returns a value
indicating failure

NC

ERR.32C Do not rely on indeterminate values of errno NC

ERR.33C Detect and handle standard library errors PC

ERR.34C Detect errors when converting a string to a number NC

ERR.50 Do not abruptly terminate the program PC

ERR.51 Handle all exceptions PC

ERR.52 Do not use setjmp() or longjmp() FC+E

continues on the next page. . .

QA-MISRA Compliance Matrices 41

Chapter 3: SEI CERT C/C++ Coding Standard
3.2 SEI CERT C++ Coding Standard

Exceptions and Error Handling (ERR) Support

. . . continued

ERR.53 Do not reference base classes or class data members in a con-
structor or destructor function-try-block handler

FC+E

ERR.54 Catch handlers should order their parameter types from most
derived to least derived

FC+E

ERR.55 Honor exception specifications PC

ERR.56 Guarantee exception safety NC

ERR.57 Do not leak resources when handling exceptions NC

ERR.58 Handle all exceptions thrown before main() begins executing PC

ERR.59 Do not throw an exception across execution boundaries NC

ERR.60 Exception objects must be nothrow copy constructible NC

ERR.61 Catch exceptions by lvalue reference FC+E

ERR.62 Detect errors when converting a string to a number NC

Object Oriented Programming (OOP) Support

OOP.50 Do not invoke virtual functions from constructors or destructors FC+E

OOP.51 Do not slice derived objects NC

OOP.52 Do not delete a polymorphic object without a virtual destructor PC

OOP.53 Write constructor member initializers in the canonical order FC+E

OOP.54 Gracefully handle self-copy assignment NC

OOP.55 Do not use pointer-to-member operators to access nonexistent
members

NC

OOP.56 Honor replacement handler requirements NC

OOP.57 Prefer special member functions and overloaded operators to C
Standard Library functions

PC

OOP.58 Copy operations must not mutate the source object NC

Concurrency (CON) Support

CON.33C Avoid race conditions when using library functions NC

continues on the next page. . .

42 QA Systems GmbH

Chapter 3: SEI CERT C/C++ Coding Standard
3.2 SEI CERT C++ Coding Standard

Concurrency (CON) Support

. . . continued

CON.37C Do not call signal() in a multithreaded program FC+E

CON.40C Do not refer to an atomic variable twice in an expression NC

CON.41C Wrap functions that can fail spuriously in a loop NC

CON.43C Do not allow data races in multithreaded code NC

CON.50 Do not destroy a mutex while it is locked NC

CON.51 Ensure actively held locks are released on exceptional conditions NC

CON.52 Prevent data races when accessing bit-fields from multiple
threads

NC

CON.53 Avoid deadlock by locking in a predefined order NC

CON.54 Wrap functions that can spuriously wake up in a loop NC

CON.55 Preserve thread safety and liveness when using condition vari-
ables

NC

CON.56 Do not speculatively lock a non-recursive mutex that is already
owned by the calling thread

NC

Miscellaneous (MSC) Support

MSC.30C Do not use the rand() function for generating pseudorandom
numbers

FC+E

MSC.32C Properly seed pseudorandom number generators PC

MSC.33C Do not pass invalid data to the asctime() function NC

MSC.37C Ensure that control never reaches the end of a non-void function FC+E

MSC.38C Do not treat a predefined identifier as an object if it might only
be implemented as a macro

NC

MSC.39C Do not call va_arg() on a va_list that has an indeterminate value NC

MSC.40C Do not violate constraints NC

MSC.41C Never hard code sensitive information NC

MSC.50 Do not use std::rand() for generating pseudorandom numbers FC+E

MSC.51 Ensure your random number generator is properly seeded PC

MSC.52 Value-returning functions must return a value from all exit paths FC+E

continues on the next page. . .

QA-MISRA Compliance Matrices 43

Chapter 3: SEI CERT C/C++ Coding Standard
3.2 SEI CERT C++ Coding Standard

Miscellaneous (MSC) Support

. . . continued

MSC.53 Do not return from a function declared [[noreturn]] FC

MSC.54 A signal handler must be a plain old function NC

44 QA Systems GmbH

4 JSF AV C++

Coding guideline checks can be executed with or without runtime error analysis. Coupling QA-MISRA
with Astrée’s runtime error analysis can raise the degree to which a coding guideline is supported.

The following table shows the degree of rule support for each rule assuming no coupling. Detailed
information on the degree of support when coupled with Astrée can be found in the dedicated a3 for
C/C++ Compliance documentation.

In total, 145 rules of the rule set – i. e. 64% of all 227 rules – are checked:

All Rules
fully checked 0 (0 %)
partially checked 0 (0 %)
implicitly checkable 145 (64 %)
not checked 82 (36 %)

Code Size and Complexity Support

1 Any one function (or method) will contain no more than 200
logical source lines of code (L-SLOCs).

S

2 There shall not be any self-modifying code. NC

3 All functions shall have a cyclomatic complexity number of 20 or
less.

S

Breaking Rules Support

4 To break a should rule, the following approval must be received
by the developer:

• approval from the software engineering lead (obtained by
the unit approval in the developmental CM tool)

NC

continues on the next page. . .

QA-MISRA Compliance Matrices 45

Chapter 4: JSF AV C++

Breaking Rules Support

. . . continued

5 To break a will or a shall rule, the following approval must be
received by the developer:

• approval from the software engineering lead (obtained by
the unit approval in the developmental CM tool)

• approval from the software product manager (obtained by
the unit approval in the developmental CM tool)

NC

6 Each deviation from a shall rule shall be documented in the file
that contains the deviation. Deviations from this rule shall not be
allowed, AV Rule 5 notwithstanding.

NC

7 Approval will not be required for a deviation from a shall or will
rule that complies with an exception specified by that rule.

NC

Language Support

8 All code shall conform to ISO/IEC 14882:2002(E) standard C++. S

Character Sets Support

9 Only those characters specified in the C++ basic source character
set will be used.

S

10 Values of character types will be restricted to a defined and docu-
mented subset of ISO 10646-1.

S

11 Trigraphs will not be used. S

12 The following digraphs will not be used: S

13 Multi-byte characters and wide string literals will not be used. S

14 Literal suffixes shall use uppercase rather than lowercase letters. S

Run-time Checks Support

15 Provision shall be made for run-time checking (defensive pro-
gramming).

S

46 QA Systems GmbH

Chapter 4: JSF AV C++

Libraries Support

16 Only DO-178B level A certifiable or SEAL 1 C/C++ libraries shall
be used with safety-critical (i.e. SEAL 1) code.

S

Standard Libraries Support

17 The error indicator errno shall not be used. S

18 The macro offsetof, in library <stddef.h>, shall not be used. S

19 <locale.h> and the setlocale function shall not be used. S

20 The setjmp macro and the longjmp function shall not be used. S

21 The signal handling facilities of <signal.h> shall not be used. S

22 The input/output library <stdio.h> shall not be used. S

23 The library functions atof, atoi and atol from library
<stdlib.h> shall not be used.

S

24 The library functions abort, exit, getenv and system from
library <stdlib.h> shall not be used.

S

25 The time handling functions of library <time.h> shall not be
used.

S

Pre-Processing Directives Support

26 Only the following pre-processor directives shall be used:

1. #ifndef

2. #define

3. #endif

4. #include

S

27 #ifndef, #define and #endif will be used to prevent multiple
inclusions of the same header file. Other techniques to prevent
the multiple inclusions of header files will not be used.

S

28 The #ifndef and #endif pre-processor directives will only be
used as defined in AV Rule 27 to prevent multiple inclusions of
the same header file.

S

continues on the next page. . .

QA-MISRA Compliance Matrices 47

Chapter 4: JSF AV C++

Pre-Processing Directives Support

. . . continued

29 The #define pre-processor directive shall not be used to create
inline macros. Inline functions shall be used instead.

S

30 The #define pre-processor directive shall not be used to define
constant values. Instead, the const qualifier shall be applied to
variable declarations to specify constant values.

S

31 The #define pre-processor directive will only be used as part of
the technique to prevent multiple inclusions of the same header
file.

S

32 The #include pre-processor directive will only be used to include
header (*.h) files.

S

Header Files Support

33 The #include directive shall use the <filename.h> notation to
include header files.

S

34 Header files should contain logically related declarations only. NC

35 A header file will contain a mechanism that prevents multiple
inclusions of itself.

S

36 Compilation dependencies should be minimized when possible. S

37 Header (include) files should include only those header files that
are required for them to successfully compile. Files that are only
used by the associated .cpp file should be placed in the .cpp file -
not the .h file.

NC

38 Declarations of classes that are only accessed via pointers (*)
or references (&) should be supplied by forward headers that
contain only forward declarations.

NC

39 Header files (*.h) will not contain non-const variable definitions
or function definitions.

S

Implementation Files Support

40 Every implementation file shall include the header files that
uniquely define the inline functions, types, and templates used.

S

48 QA Systems GmbH

Chapter 4: JSF AV C++

Style Support

41 Source lines will be kept to a length of 120 characters or less. NC

42 Each expression-statement will be on a separate line. S

43 Tabs should be avoided. NC

44 All indentations will be at least two spaces and be consistent
within the same source file.

NC

Naming Identifiers Support

45 All words in an identifier will be separated by the ’_’ character. NC

46 User-specified identifiers (internal and external) will not rely on
significance of more than 64 characters.

NC

47 Identifiers will not begin with the underscore character ’_’. NC

48 Identifiers will not differ by:

• Only a mixture of case

• The presence/absence of the underscore character

• The interchange of the letter ’O’, with the number ’0’ or the
letter ’D’

• The interchange of the letter ’I’, with the number ’1’ or the
letter ’l’

• The interchange of the letter ’S’ with the number ’5’

• The interchange of the letter ’Z’ with the number ’2’

• The interchange of the letter ’n’ with the letter ’h’.

S

49 All acronyms in an identifier will be composed of uppercase let-
ters

NC

Naming Classes, Structures, Enumerated types and typedefs Support

50 The first word of the name of a class, structure, namespace, enu-
meration, or type created with typedef will begin with an up-
percase letter. All others letters will be lowercase.

NC

QA-MISRA Compliance Matrices 49

Chapter 4: JSF AV C++

Naming Functions, Variables and Parameters Support

51 All letters contained in function and variable names will be com-
posed entirely of lowercase letters.

NC

Naming Constants and Enumerators Support

52 Identifiers for constant and enumerator values shall be lower-
case.

NC

Naming Files Support

53 Header files will always have a file name extension of ".h". S

53.1 The following character sequences shall not appear in header file
names: ’, /*, //, or ".

S

54 Implementation files will always have a file name extension of
".cpp".

S

55 The name of a header file should reflect the logical entity for
which it provides declarations.

NC

56 The name of an implementation file should reflect the logical
entity for which it provides definitions and have a ".cpp" exten-
sion (this name will normally be identical to the header file that
provides the corresponding declarations.)

NC

Classes Support

57 The public, protected, and private sections of a class will be de-
clared in that order (the public section is declared before the
protected section which is declared before the private section).

NC

Functions Support

58 When declaring and defining functions with more than two pa-
rameters, the leading parenthesis and the first argument will be
written on the same line as the function name. Each additional
argument will be written on a separate line (with the closing
parenthesis directly after the last argument).

NC

50 QA Systems GmbH

Chapter 4: JSF AV C++

Blocks Support

59 The statements forming the body of an if, else if, else, while,
do...while or for statement shall always be enclosed in braces,
even if the braces form an empty block.

S

60 Braces ("{}") which enclose a block will be placed in the same
column, on separate lines directly before and after the block.

NC

61 Braces ("{}") which enclose a block will have nothing else on the
line except comments (if necessary).

NC

Pointers and References Support

62 The dereference operator ’’ and the address-of operator ’&’ will
be directly connected with the type-specifier.

NC

Miscellaneous Support

63 Spaces will not be used around ’.’ or ’->’, nor between unary
operators and operands.

NC

Class Interfaces Support

64 A class interface should be complete and minimal. NC

Considerations Regarding Access Rights Support

65 A structure should be used to model an entity that does not re-
quire an invariant.

S

66 A class should be used to model an entity that maintains an in-
variant.

S

67 Public and protected data should only be used in structs—not
classes.

S

Member Functions Support

68 Unneeded implicitly generated member functions shall be explic-
itly disallowed.

S

QA-MISRA Compliance Matrices 51

Chapter 4: JSF AV C++

const Member Functions Support

69 A member function that does not affect the state of an object (its
instance variables) will be declared const.

S

Friends Support

70 A class will have friends only when a function or object requires
access to the private elements of the class, but is unable to be a
member of the class for logical or efficiency reasons.

S

Object Lifetime Support

70.1 An object shall not be improperly used before its lifetime begins
or after its lifetime ends.

S

71 Calls to an externally visible operation of an object, other than its
constructors, shall not be allowed until the object has been fully
initialized.

S

71.1 A class’s virtual functions shall not be invoked from its destructor
or any of its constructors.

S

72 The invariant for a class should be:

• a part of the postcondition of every class constructor,

• a part of the precondition of the class destructor (if any),

• a part of the precondition and postcondition of every other
publicly accessible operation.

S

73 Unnecessary default constructors shall not be defined. NC

74 Initialization of nonstatic class members will be performed
through the member initialization list rather than through assign-
ment in the body of a constructor.

S

75 Members of the initialization list shall be listed in the order in
which they are declared in the class.

S

76 A copy constructor and an assignment operator shall be declared
for classes that contain pointers to data items or nontrivial de-
structors.

NC

continues on the next page. . .

52 QA Systems GmbH

Chapter 4: JSF AV C++

Object Lifetime Support

. . . continued

77 A copy constructor shall copy all data members and bases that
affect the class invariant (a data element representing a cache,
for example, would not need to be copied).

NC

77.1 The definition of a member function shall not contain de-
fault arguments that produce a signature identical to that of
the implicitly-declared copy constructor for the corresponding
class/structure.

NC

Destructors Support

78 All base classes with a virtual function shall define a virtual de-
structor.

S

79 All resources acquired by a class shall be released by the class’s
destructor.

NC

Assignment Operators Support

80 The default copy and assignment operators will be used for classes
when those operators offer reasonable semantics.

S

81 The assignment operator shall handle self-assignment correctly. NC

82 An assignment operator shall return a reference to this. S

83 An assignment operator shall assign all data members and bases
that affect the class invariant (a data element representing a
cache, for example, would not need to be copied).

NC

Operator Overloading Support

84 Operator overloading will be used sparingly and in a conventional
manner.

S

85 When two operators are opposites (such as == and !=), both will
be defined and one will be defined in terms of the other.

S

QA-MISRA Compliance Matrices 53

Chapter 4: JSF AV C++

Inheritance Support

86 Concrete types should be used to represent simple independent
concepts.

NC

87 Hierarchies should be based on abstract classes. NC

88 Multiple inheritance shall only be allowed in the following re-
stricted form: n interfaces plus m private implementations, plus
at most one protected implementation.

S

88.1 A stateful virtual base shall be explicitly declared in each derived
class that accesses it.

NC

89 A base class shall not be both virtual and non-virtual in the same
hierarchy.

S

90 Heavily used interfaces should be minimal, general and abstract. NC

91 Public inheritance will be used to implement "is-a" relationships. NC

92 A subtype (publicly derived classes) will conform to the following
guidelines with respect to all classes involved in the polymorphic
assignment of different subclass instances to the same variable
or parameter during the execution of the system:

• Preconditions of derived methods must be at least as weak
as the preconditions of the methods they override.

• Postconditions of derived methods must be at least as strong
as the postconditions of the methods they override.

NC

93 "has-a" or "is-implemented-in-terms-of" relationships will be mod-
eled through membership or non-public inheritance.

NC

94 An inherited nonvirtual function shall not be redefined in a de-
rived class.

S

95 An inherited default parameter shall never be redefined. S

96 Arrays shall not be treated polymorphically. S

97 Arrays shall not be used in interfaces. Instead, the Array class
should be used.

S

Virtual Member Functions Support

97.1 Neither operand of an equality operator (== or !=) shall be a
pointer to a virtual member function.

S

54 QA Systems GmbH

Chapter 4: JSF AV C++

Namespaces Support

98 Every nonlocal name, except main(), should be placed in some
namespace.

S

99 Namespaces will not be nested more than two levels deep. NC

100 Elements from a namespace should be selected as follows:

• using declaration or explicit qualification for few (approxi-
mately five) names,

• using directive for many names.

NC

Templates Support

101 Templates shall be reviewed as follows:

1. with respect to the template in isolation considering as-
sumptions or requirements placed on its arguments.

2. with respect to all functions instantiated by actual argu-
ments.

NC

102 Template tests shall be created to cover all actual template instan-
tiations.

NC

103 Constraint checks should be applied to template arguments. NC

104 A template specialization shall be declared before its use. S

105 A template definition’s dependence on its instantiation contexts
should be minimized.

NC

106 Specializations for pointer types should be made where appro-
priate.

NC

Function Declaration, Definition and Arguments Support

107 Functions shall always be declared at file scope. S

108 Functions with variable numbers of arguments shall not be used. S

109 A function definition should not be placed in a class specification
unless the function is intended to be inlined.

NC

110 Functions with more than 7 arguments will not be used. S

continues on the next page. . .

QA-MISRA Compliance Matrices 55

Chapter 4: JSF AV C++

Function Declaration, Definition and Arguments Support

. . . continued

111 A function shall not return a pointer or reference to a non-static
local object.

S

112 Function return values should not obscure resource ownership. S

Return Types and Values Support

113 Functions will have a single exit point. S

114 All exit points of value-returning functions shall be through re-
turn statements.

S

115 If a function returns error information, then that error informa-
tion will be tested.

S

Function Parameters (Value, Pointer or Reference) Support

116 Small, concrete-type arguments (two or three words in size)
should be passed by value if changes made to formal parameters
should not be reflected in the calling function.

S

117 Arguments should be passed by reference if NULL values are not
possible.

NC

117.1 An object should be passed as const T& if the function should not
change the value of the object.

S

117.2 An object should be passed as T& if the function may change the
value of the object.

NC

118 Arguments should be passed via pointers if NULL values are
possible.

NC

118.1 An object should be passed as const T if its value should not be
modified.

NC

118.2 An object should be passed as T if its value may be modified. NC

Function Invocation Support

119 Functions shall not call themselves, either directly or indirectly
(i.e. recursion shall not be allowed).

S

56 QA Systems GmbH

Chapter 4: JSF AV C++

Function Overloading Support

120 Overloaded operations or methods should form families that use
the same semantics, share the same name, have the same purpose,
and that are differentiated by formal parameters.

NC

Inline Functions Support

121 Only functions with 1 or 2 statements should be considered can-
didates for inline functions.

NC

122 Trivial accessor and mutator functions should be inlined. S

123 The number of accessor and mutator functions should be mini-
mized.

NC

124 Trivial forwarding functions should be inlined. NC

Temporary Objects Support

125 Unnecessary temporary objects should be avoided. NC

Comments Support

126 Only valid C++ style comments (//) shall be used. S

127 Code that is not used (commented out) shall be deleted. NC

128 Comments that document actions or sources (e.g. tables, figures,
paragraphs, etc.) outside of the file being documented will not be
allowed.

S

129 Comments in header files should describe the externally visible
behavior of the functions or classes being documented.

S

130 The purpose of every line of executable code should be explained
by a comment, although one comment may describe more than
one line of code.

S

131 One should avoid stating in comments what is better stated in
code (i.e. do not simply repeat what is in the code).

S

132 Each variable declaration, typedef, enumeration value, and struc-
ture member will be commented.

S

continues on the next page. . .

QA-MISRA Compliance Matrices 57

Chapter 4: JSF AV C++

Comments Support

. . . continued

133 Every source file will be documented with an introductory com-
ment that provides information on the file name, its contents,
and any program-required information (e.g. legal statements,
copyright information, etc).

S

134 Assumptions (limitations) made by functions should be docu-
mented in the function’s preamble.

S

Declarations and Definitions Support

135 Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

S

136 Declarations should be at the smallest feasible scope. NC

137 All declarations at file scope should be static where possible. S

138 Identifiers shall not simultaneously have both internal and exter-
nal linkage in the same translation unit.

S

139 External objects will not be declared in more than one file. S

140 The register storage class specifier shall not be used. S

141 A class, structure, or enumeration will not be declared in the
definition of its type.

S

Initialization Support

142 All variables shall be initialized before use. S

143 Variables will not be introduced until they can be initialized with
meaningful values.

S

144 Braces shall be used to indicate and match the structure in the
non-zero initialization of arrays and structures.

S

145 In an enumerator list, the ’=’ construct shall not be used to
explicitly initialize members other than the first, unless all items
are explicitly initialized.

S

58 QA Systems GmbH

Chapter 4: JSF AV C++

Initialization Support

146 Floating point implementations shall comply with a defined float-
ing point standard.

NC

147 The underlying bit representations of floating point numbers
shall not be used in any way by the programmer.

S

148 Enumeration types shall be used instead of integer types (and
constants) to select from a limited series of choices.

NC

Constants Support

149 Octal constants (other than zero) shall not be used. S

150 Hexadecimal constants will be represented using all uppercase
letters.

S

151 Numeric values in code will not be used; symbolic values will be
used instead.

S

151.1 A string literal shall not be modified. S

Variables Support

152 Multiple variable declarations shall not be allowed on the same
line.

S

Unions and Bit Fields Support

153 Unions shall not be used. S

154 Bit-fields shall have explicitly unsigned integral or enumeration
types only.

S

155 Bit-fields will not be used to pack data into a word for the sole
purpose of saving space.

S

156 All the members of a structure (or class) shall be named and shall
only be accessed via their names.

NC

Operators Support

157 The right hand operand of a && or || operator shall not contain
side effects.

S

continues on the next page. . .

QA-MISRA Compliance Matrices 59

Chapter 4: JSF AV C++

Operators Support

. . . continued

158 The operands of a logical && or || shall be parenthesized if the
operands contain binary operators.

S

159 Operators ||, &&, and unary & shall not be overloaded. S

160 An assignment expression shall be used only as the expression in
an expression statement.

S

162 Signed and unsigned values shall not be mixed in arithmetic or
comparison operations.

S

163 Unsigned arithmetic shall not be used. NC

164 The right hand operand of a shift operator shall lie between zero
and one less than the width in bits of the left-hand operand (in-
clusive).

S

164.1 The left-hand operand of a right-shift operator shall not have a
negative value.

NC

165 The unary minus operator shall not be applied to an unsigned
expression.

S

166 The sizeof operator will not be used on expressions that contain
side effects.

S

167 The implementation of integer division in the chosen compiler
shall be determined, documented and taken into account.

NC

168 The comma operator shall not be used. S

Pointers & References Support

169 Pointers to pointers should be avoided when possible. S

170 More than 2 levels of pointer indirection shall not be used. S

continues on the next page. . .

60 QA Systems GmbH

Chapter 4: JSF AV C++

Pointers & References Support

. . . continued

171 Relational operators shall not be applied to pointer types except
where both operands are of the same type and point to:

• the same object,

• the same function,

• members of the same object, or

• elements of the same array (including one past the end of
the same array).

NC

173 The address of an object with automatic storage shall not be
assigned to an object which persists after the object has ceased to
exist.

NC

174 The null pointer shall not be de-referenced. NC

175 A pointer shall not be compared to NULL or be assigned NULL;
use plain 0 instead.

S

176 A typedef will be used to simplify program syntax when declaring
function pointers.

NC

Type Conversions Support

177 User-defined conversion functions should be avoided. S

178 Down casting (casting from base to derived class) shall only be
allowed through one of the following mechanism:

• Virtual functions that act like dynamic casts (most likely
useful in relatively simple cases)

• Use of the visitor (or similar) pattern (most likely useful in
complicated cases)

S

179 A pointer to a virtual base class shall not be converted to a pointer
to a derived class.

S

180 Implicit conversions that may result in a loss of information shall
not be used.

S

181 Redundant explicit casts will not be used. S

continues on the next page. . .

QA-MISRA Compliance Matrices 61

Chapter 4: JSF AV C++

Type Conversions Support

. . . continued

182 Type casting from any type to or from pointers shall not be used. S

183 Every possible measure should be taken to avoid type casting. NC

184 Floating point numbers shall not be converted to integers unless
such a conversion is a specified algorithmic requirement or is
necessary for a hardware interface.

S

185 C++ style casts (const_cast, reinterpret_cast, and
static_cast) shall be used instead of the traditional C-style
casts.

S

Flow Control Structures Support

186 There shall be no unreachable code. S

187 All non-null statements shall potentially have a side-effect. S

188 Labels will not be used, except in switch statements. S

189 The goto statement shall not be used. S

190 The continue statement shall not be used. S

191 The break statement shall not be used (except to terminate the
cases of a switch statement).

NC

192 All if, else if constructs will contain either a final else clause
or a comment indicating why a final else clause is not necessary.

S

193 Every non-empty case clause in a switch statement shall be ter-
minated with a break statement.

S

194 All switch statements that do not intend to test for every enu-
meration value shall contain a final default clause.

S

195 A switch expression will not represent a Boolean value. S

196 Every switch statement will have at least two cases and a poten-
tial default.

S

197 Floating point variables shall not be used as loop counters. S

198 The initialization expression in a for loop will perform no actions
other than to initialize the value of a single for loop parameter.

NC

continues on the next page. . .

62 QA Systems GmbH

Chapter 4: JSF AV C++

Flow Control Structures Support

. . . continued

199 The increment expression in a for loop will perform no action
other than to change a single loop parameter to the next value
for the loop.

S

200 Null initialize or increment expressions in for loops will not be
used; a while loop will be used instead.

S

201 Numeric variables being used within a for loop for iteration
counting shall not be modified in the body of the loop.

S

Expressions Support

202 Floating point variables shall not be tested for exact equality or
inequality.

S

203 Evaluation of expressions shall not lead to overflow/underflow
(unless required algorithmically and then should be heavily doc-
umented).

S

Signed arithmetic overflows in constexpr expressions are rejected by
the frontend as language error.

204 A single operation with side-effects shall only be used in the fol-
lowing contexts:

1. by itself

2. the right-hand side of an assignment

3. a condition

4. the only argument expression with a side-effect in a func-
tion call

5. condition of a loop

6. switch condition

7. single part of a chained operation.

NC

204.1 The value of an expression shall be the same under any order of
evaluation that the standard permits.

S

205 The volatile keyword shall not be used unless directly interfac-
ing with hardware.

S

QA-MISRA Compliance Matrices 63

Chapter 4: JSF AV C++

Memory Allocation Support

206 Allocation/deallocation from/to the free store (heap) shall not
occur after initialization.

S

207 Unencapsulated global data will be avoided. NC

Fault Handling Support

208 C++ exceptions shall not be used (i.e. throw, catch and try shall
not be used.)

NC

Data Abstraction Support

209 The basic types of int, short, long, float and double shall
not be used, but specific-length equivalents should be typedef’d
accordingly for each compiler, and these type names used in the
code.

S

Data Representation Support

210 Algorithms shall not make assumptions concerning how data is
represented in memory (e.g. big endian vs. little endian, base
class subobject ordering in derived classes, nonstatic data mem-
ber ordering across access specifiers, etc.)

NC

210.1 Algorithms shall not make assumptions concerning the order
of allocation of nonstatic data members separated by an access
specifier.

NC

211 Algorithms shall not assume that shorts, ints, longs, floats,
doubles or long doubles begin at particular addresses.

NC

Underflow/Overflow Support

212 Underflow or overflow functioning shall not be depended on in
any special way.

NC

Order of Execution Support

213 No dependence shall be placed on C++’s operator precedence
rules, below arithmetic operators, in expressions.

NC

continues on the next page. . .

64 QA Systems GmbH

Chapter 4: JSF AV C++

Order of Execution Support

. . . continued

214 Assuming that non-local static objects, in separate translation
units, are initialized in a special order shall not be done.

S

Pointer Arithmetic Support

215 Pointer arithmetic will not be used. S

QA-MISRA Compliance Matrices 65

5 ISO/IEC TS 17961:2013

Coding guideline checks can be executed with or without runtime error analysis. Coupling QA-MISRA
with Astrée’s runtime error analysis can raise the degree to which a coding guideline is supported.

The following table shows the degree of rule support for each rule assuming no coupling. Detailed
information on the degree of support when coupled with Astrée can be found in the dedicated a3 for
C/C++ Compliance documentation.

The ISO/IEC TS 17961:2013 rule set is based on [6].

In total, 37 rules of the rule set – i. e. 80% of all 46 rules – are checked:

All Rules
fully checked 8 (17 %)
partially checked 17 (36 %)
implicitly checkable 12 (26 %)
not checked 9 (19 %)

ISO/IEC TS 17961:2013 Support

accfree Accessing freed memory. S

MISRA C:2012 Rules/Directives D.4.12, 1.3, 21.3

accsig Accessing shared objects in signal handlers. PC

addrescape Escaping of the address of an automatic object. PC

alignconv Converting pointer values to more strictly aligned pointer types. FC+E

argcomp Calling functions with incorrect arguments. PC

asyncsig Calling functions in the C Standard Library other than abort, _Exit,
and signal from within a signal handler.

PC

boolasgn No assignment in conditional expressions. FC+E

chreof Using character values that are indistinguishable from EOF. NC

chrsgnext Passing arguments to character-handling functions that are not
representable as unsigned char.

PC

The non-standard functions isascii() and toascii() are not covered.

dblfree Freeing memory multiple times. PC

continues on the next page. . .

66 QA Systems GmbH

Chapter 5: ISO/IEC TS 17961:2013

ISO/IEC TS 17961:2013 Support

. . . continued

diverr Integer division errors. NC

fileclose Failing to close files or free dynamic memory when they are no
longer needed.

NC

MISRA C:2012 Rules/Directives 22.1

filecpy Copying a FILE object. PC

funcdecl Declaring the same function or object in incompatible ways. FC+E

insufmem Allocating insufficient memory. PC

intoflow Overflowing signed integers. NC

intptrconv Converting a pointer to integer or integer to pointer. S

MISRA-C:2004 Rule 11.3, MISRA C:2012 Rules 11.4, 1.3

inverrno Incorrectly setting and using errno. NC

invfmtstr Using invalid format strings. S

MISRA C:2012 Rules/Directives D.4.1, D.4.11, 1.3, 21.6

invptr Forming or using out-of-bounds pointers or array subscripts. PC

ioileave Interleaving stream inputs and outputs without a flush or posi-
tioning call.

S

MISRA C:2012 Rules/Directives D.4.1, 1.3, 21.6

liberr Failing to detect and handle standard library errors. PC

libmod Modifying the string returned by getenv, localeconv, setlocale,
and strerror.

PC

libptr Forming invalid pointers by library function. S

MISRA C:2012 Rules/Directives D.4.1, D.4.11, 1.3

libuse Using an object overwritten by getenv, localeconv, setlocale, and
strerror.

S

MISRA C:2012 Rules/Directives 21.8

nonnullcs Passing a non-null-terminated character sequence to a library
function that expects a string.

NC

MISRA C:2012 Rules/Directives D.4.1, D.4.11, 1.3

nullref Dereferencing an out-of-domain pointer. NC

continues on the next page. . .

QA-MISRA Compliance Matrices 67

Chapter 5: ISO/IEC TS 17961:2013

ISO/IEC TS 17961:2013 Support

. . . continued

padcomp Comparison of padding data. PC

ptrcomp Accessing an object through a pointer to an incompatible type. S

MISRA C:2012 Rules/Directives 1.3, 10.8, 11.2, 11.3

ptrobj Subtracting or comparing two pointers that do not refer to the
same array.

PC

resident Using identifiers that are reserved for the implementation. FC+E

restrict Passing pointers into the same object as arguments to different
restrict-qualified parameters.

S

MISRA C:2012 Rules/Directives 1.3, 8.14

sigcall Calling signal from interruptible signal handlers. PC

signconv Conversion of signed characters to wider integer types before a
check for EOF.

FC

The check for this rule reports any such conversion, not checking
whether the resulting value will be compared to EOF or not.

sizeofptr Taking the size of a pointer to determine the size of the pointed-to
type.

FC+E

strmod Modifying string literals. PC

swtchdflt Use of an implied default in a switch statement. FC+E

syscall Calling system. FC+E

taintformatio Using a tainted value to write to an object using a formatted input
or output function.

S

MISRA C:2012 Rules/Directives D.4.1, D.4.11, 21.6

taintnoproto Using a tainted value as an argument to an unprototyped function
pointer.

S

Function prototypes can be enforced by MISRA-C:2004 Rule 8.1 or MISRA
C:2012 Rule 8.2.

taintsink Tainted, potentially mutilated, or out-of-domain integer values
are used in a restricted sink.

NC

Astrée warns if the resulting pointer value is dereferenced.

taintstrcpy Tainted strings are passed to a string copying function. NC

MISRA C:2012 Rules/Directives D.4.1, D.4.11

continues on the next page. . .

68 QA Systems GmbH

Chapter 5: ISO/IEC TS 17961:2013

ISO/IEC TS 17961:2013 Support

. . . continued

uninitref Referencing uninitialized memory. PC

usrfmt Including tainted or out-of-domain input in a format string. S

MISRA C:2012 Rules/Directives D.4.1, D.4.11, 1.3, 21.6

xfilepos Using a value for fsetpos other than a value returned from fgetpos. S

MISRA C:2012 Rules/Directives D.4.1, D.4.11, 1.3, 21.6

xfree Reallocating or freeing memory that was not dynamically allo-
cated.

PC

QA-MISRA Compliance Matrices 69

6 HIS Metrics

1. Metrics with thresholds (Metriken mit Grenzwerten) Support

COMF Kommentardichte "COMF" (comment density) yes

PATH Anzahl der Pfade (number of paths) yes

GOTO Anzahl Sprunganweisungen (number of jump statements) yes

v(G) Zyklomatische Komplexität (cyclomatic complexity) yes

CALLING Anzahl der aufrufenden Funktionen (number of callers) yes

CALLS Anzahl der aufgerufenen Funktionen (number of callees) yes

PARAM Anzahl Funktionsparameter (number of arguments) yes

STMT Anzahl der Befehle pro Funktion (statements per function) yes

LEVEL Anzahl der Aufruflevel (call levels) yes

RETURN Anzahl der Aussprungpunkte (number of returns) yes

𝑆𝑖 Stabilitätsindex no

See 2. Metrics without thresholds.

VOCF Sprachumfang yes

NOMV This metric counts the number of violations of the HIS Subset
MISRA C 1.0.2.

partial

The number of rule violations of supported and activated MISRA rules
is shown by QA-MISRA.

NOMVPR This metric counts the number of violations of the HIS Subset
MISRA C 1.0.2. per rule.

partial

The number of rule violations of per supported and activated MISRA
rules is shown by QA-MISRA.

ap_cg_cycle Anzahl der Rekursionen yes

70 QA Systems GmbH

Chapter 6: HIS Metrics

2. Metrics without thresholds (Metriken ohne Grenzwerte) Support

𝑆𝑐ℎ𝑎𝑛𝑔𝑒,
𝑆𝑑𝑒𝑙 , and
𝑆𝑛𝑒𝑤

QA-MISRA provides a revisioning system: users can create revi-
sions of the analysis project at different points in time which include
the entire analysis state including option settings, alarms, and the
source code. QA-MISRA can also compare different revisions and
visualize the differences (e.g. in number of alarms by category, in
option setting, in coverage, etc.). Since revisions also contain the
full source code, also differences in the source code can be easily ob-
tained. This information can then be used as a basis for computing
these metrics.

QA-MISRA Compliance Matrices 71

https://www.qa-systems.com/qa-misra-tool-trial/
https://www.qa-systems.com/tools/qa-misra/
mailto:sales@qa-systems.com

Bibliography

[1] MISRA Limited. MISRA-C:2004 Guidelines for the use of the C language in critical systems. ISBN
978-0-9524156-4-0, October 2004.

[2] MISRA Limited. MISRA-C:2012 Guidelines for the use of the C language in critical systems. ISBN
978-1-906400-11-8, March 2013.

[3] QA Systems GmbH. QA-MISRA – User Documentation. Version 23.04, Build 13183398, April 18, 2023.

[4] AUTOSAR. Guidelines for the use of the C++14 language in critical and safety-related systems (release
19-03). Release 19-03, March 2019.

[5] Carnegie Mellon University. SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and
Secure Systems. 2016.

[6] ISO. ISO/IEC TS 17961:2013(E): Information Technology–Programming Languages, Their Environ-
ments and System Software Interfaces–C Secure Coding Rules. November 2013.

72 QA Systems GmbH

	Title Page
	Contents
	1 Introduction
	1.1 Terms and Definitions

	2 Common Weakness Enumeration – CWE
	3 SEI CERT C/C++ Coding Standard
	3.1 SEI CERT C Coding Standard
	3.2 SEI CERT C++ Coding Standard

	4 JSF AV C++
	5 ISO/IEC TS 17961:2013
	6 HIS Metrics
	Bibliography

