
QA-MISRA

Compliance Matrices for

MISRA C:2012
(including Amendments)

Release 23.04, b13183398

April 18, 2023

QA Systems GmbH
powered by AbsInt Angewandte Informatik GmbH

CONTACT:

QA Systems GmbH
support@qa-systems.com
www.qa-systems.com
www.qa-systems.de/tools/qa-misra/

COPYRIGHT NOTICE:

© QA Systems GmbH

The product name QA-MISRA is a registered trademark of QA Systems GmbH. "MISRA" and "MISRA C" are
registered trademarks owned by The MISRA Consortium Ltd., held on behalf of the MISRA Consortium.
QA-MISRA is an independent tool of QA Systems and is not associated with the MISRA Consortium.

All rights reserved. This document, or parts of it, or modified versions of it, may not be copied, reproduced
or transmitted in any form, or by any means, or stored in a retrieval system, or used for any purpose,
without the prior written permission of QA Systems GmbH.

The information contained in this document is subject to change without notice.

LIMITATION OF LIABILITY:

Every effort has been taken in manufacturing the product supplied and drafting the accompanying docu-
mentation.

QA Systems GmbH makes no warranty or representation, either expressed or implied, with respect to the
software, including its quality, performance, merchantability, or fitness for a particular purpose. The entire
risk as to the quality and performance of the software lies with the licensee.

Because software is inherently complex and may not be completely free of errors, the licensee is advised to
verify his work where appropriate. In no event will QA Systems GmbH be liable for any damages whatsoever
including – but not restricted to – lost revenue or profits or other direct, indirect, special, incidental, cover,
or consequential damages arising out of the use of or inability to use the software, even if advised of the
possibility of such damages, except to the extent invariable law, if any, provides otherwise.

QA Systems GmbH also does not recognize any warranty or update claims unless explicitly provided for
otherwise in a special agreement.

Known Safety Issues:

www.absint.com/known-issues/qa-misra/23.04.md

2 QA Systems GmbH

mailto:support@qa-systems.com
http://www.qa-systems.com
http://www.qa-systems.de/tools/qa-misra/
http://www.absint.com/known-issues/qa-misra/23.04.md

Contents

1 Introduction 4
1.1 Terms and Definitions . 4
1.2 Coverage . 5

2 MISRA C:2012 6

3 MISRA C:2012 Amendment 1 19

4 MISRA C:2012 Amendment 2 21

5 MISRA C:2012 Amendment 3 22

Bibliography 25

QA-MISRA Compliance Matrices for MISRA C:2012 3

1 Introduction

QA-MISRA is a static analyzer that checks for violations of coding guidelines such as MISRA. It supports
the MISRA-C:2004, MISRA C:2012, MISRA C++:2008, AUTOSAR C++14, ISO/IEC TS 17961:2013, CERT, JSF AV
C++, and CWE rule sets, as well as rules for coding style and thresholds for code metrics.

Astrée (https://www.absint.com/astree/index.htm) is a static code analyzer that proves the ab-
sence of runtime errors and invalid concurrent behavior in safety-critical software written or generated
in C or C++. Astrée and QA-MISRA can be seamlessly integrated. Using QA-MISRA in conjunction with the
sound semantic analyses offered by Astrée guarantees zero false negatives and minimizes false positives
on semantical rules.

1.1 Terms and Definitions

If not stated otherwise for a specific set of guidelines, the degree of rule support is classified as follows.

fully checked A rule is fully checked (FC) if the checks adhere exactly to the rule text and the analysis
will never miss a rule violation. For fully checked rules, absence of alarms means the tool can prove the
absence of violations of this rule. False alarms may be issued.

This degree of support may be raised to fully checked + exact (FC+E) if the absence of false alarms can be
guaranteed.

partially checked A rule is partially checked (PC) if the checks either check only some aspects or a
(simplifying) reformulation of the rule (text) and/or the rule may miss rule violations. For partially
checked rules, absence of alarms does not imply absence of rule violations. False alarms may be issued.

This degree of support may be raised to partially checked + soundly supported (PC + S) if activating Astrée’s
semantic analysis underpins the rule check by issuing semantic alarms for violations of the rule and
by proving the absence of violations of some aspects of the rule or if the analyzer’s frontend implicitly
checks some aspects of the rule.

(soundly) supported A rule is classified as (soundly) supported (S) if there are no dedicated checks, but
an analysis run may produce evidence whether or not the rule is broken. This compliance level may
require that the user provides appropriate analysis stubs.

For example, the rule "No reliance shall be placed on undefined or unspecified behavior." (MISRA-C:2004,
rule 1.2) is supported by Astrée because Astrée reports undefined and unspecified behavior.

4 QA Systems GmbH

https://www.absint.com/astree/index.htm

Chapter 1: Introduction
1.2 Coverage

not checked A rule is not checked (NC) if there are no dedicated checks and checking the rule is not
supported by the analyzer.

Coding guideline checks can be executed with or without runtime error analysis. Coupling QA-MISRA
with Astrée’s runtime error analysis can raise the degree to which a coding guideline is supported.

The following table shows the degree of rule support for each rule assuming no coupling. Detailed
information on the degree of support when coupled with Astrée can be found in the dedicated a3 for
C/C++ Compliance documentation.

1.2 Coverage

In total, 203 rules of the rule set – i. e. 99% of all 206 rules – are checked:

All Rules
fully checked 144 (70 %)
partially checked 59 (29 %)
implicitly checkable 0 (0 %)
not checked 3 (1 %)

QA-MISRA Compliance Matrices for MISRA C:2012 5

2 MISRA C:2012

Coding guideline checks can be executed with or without runtime error analysis. Coupling QA-MISRA
with Astrée’s runtime error analysis can raise the degree to which a coding guideline is supported.

The following table shows the degree of rule support for each rule assuming no coupling. Detailed
information on the degree of support when coupled with Astrée can be found in the dedicated a3 for
C/C++ Compliance documentation.

The MISRA C:2012 rule set is based on [2].

Directives Support

D.1.1 Any implementation-defined behaviour on which the output of
the program depends shall be documented and understood.

PC

The tool allows to scan the code base for specific implementation-
defined behavior and allows commenting the respective findings with
a justification.

D.2.1 All source files shall compile without any compilation errors. PC

The C frontend rejects in large part constraint violations and reports
them with a diagnostic.

D.3.1 All code shall be traceable to documented requirements. PC

D.4.1 Run-time failures shall be minimized. PC

Documentation requirements are not checked. This rule check is sup-
ported by Astrée’s semantic analysis: Astrée reports runtime errors that
constitute potential violations of this rule.

D.4.2 All usage of assembly language should be documented. PC

D.4.3 Assembly language shall be encapsulated and isolated. FC+E

D.4.4 Sections of code should not be "commented out". NC

D.4.5 Identifiers in the same name space with overlapping visibility
should be typographically unambiguous.

PC

D.4.6 Typedefs that indicate size and signedness should be used in place
of the basic numerical types.

PC

continues on the next page. . .

6 QA Systems GmbH

Chapter 2: MISRA C:2012

Directives Support

. . . continued

Only use of typedefs is checked, not whether their names indicate size
and signedness. This rule check is supported by Astrée’s semantic anal-
ysis: Astrée reports overflows resulting from incorrect assumptions
about the size/signedness of numerical types.

D.4.7 If a function returns error information, then that error informa-
tion shall be tested.

PC

It is checked that the return value of calls to these functions is used, i.e.
not immediately withdrawn. Whether there is further processing of
this value, and whether this is exhaustive, is not checked.

D.4.8 If a pointer to a structure or union is never dereferenced within
a translation unit, then the implementation of the object should
be hidden.

FC+E

D.4.9 A function should be used in preference to a function-like macro
where they are interchangeable.

FC

D.4.10 Precautions shall be taken in order to prevent the contents of a
header file being included more than once.

PC

D.4.11 The validity of values passed to library functions shall be checked. PC

This rule check is supported by Astrée’s semantic analysis: Astrée pro-
vides analysis stubs for library functions that raise alarms for arguments
that may cause runtime errors. Without Astrée, the tool checks this rule
with reduced coverage and precision.

D.4.12 Dynamic memory allocation shall not be used. PC

D.4.13 Functions which are designed to provide operations on a resource
should be called in an appropriate sequence.

PC

Astrée warns about illegal use of memory management functions such
as double-free. File operations can be covered using appropriate stub
implementations.

A standard C environment Support

1.1 The program shall contain no violations of the standard C syn-
tax and constraints, and shall not exceed the implementation’s
translation limits.

PC

The frontend rejects in large part violations of ISO/IEC 9899:1999.

1.2 Language extensions should not be used. PC

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA C:2012 7

Chapter 2: MISRA C:2012

A standard C environment Support

. . . continued

Language extensions are rejected by the frontend as far as not supported
by the tool.

1.3 There shall be no occurrence of undefined or critical unspecified
behaviour.

PC

This rule check is supported by Astrée’s semantic analysis: Astrée no-
tifies about undefined and unspecified behavior according to ISO/IEC
9899:1999.

Unused code Support

2.1 A project shall not contain unreachable code. PC

Violations of this rule are reported for code that cannot be reached by
the analyzer. Such code is definitely unreachable except if the analy-
sis terminated prematurely because of an error. It cannot be guaran-
teed that all unreachable code is reported. Without Astrée, this rule is
checked with reduced coverage.

2.2 There shall be no dead code. PC

2.3 A project should not contain unused type declarations. FC+E

2.4 A project should not contain unused tag declarations. FC+E

2.5 A project should not contain unused macro definitions. FC+E

2.6 A function should not contain unused label declarations. FC+E

2.7 There should be no unused parameters in functions. FC+E

Comments Support

3.1 The character sequences /* and // shall not be used within a com-
ment.

FC+E

3.2 Line-splicing shall not be used in // comments. FC+E

Character sets and lexical conventions Support

4.1 Octal and hexadecimal escape sequences shall be terminated. FC+E

4.2 Trigraphs should not be used. FC+E

8 QA Systems GmbH

Chapter 2: MISRA C:2012

Identifiers Support

5.1 External identifiers shall be distinct. FC+E

5.2 Identifiers declared in the same scope and name space shall be
distinct.

FC+E

5.3 An identifier declared in an inner scope shall not hide an identi-
fier declared in an outer scope.

FC+E

5.4 Macro identifiers shall be distinct. FC+E

5.5 Identifiers shall be distinct from macro names. FC+E

5.6 A typedef name shall be a unique identifier. FC+E

5.7 A tag name shall be a unique identifier. FC+E

5.8 Identifiers that define objects or functions with external linkage
shall be unique.

FC+E

5.9 Identifiers that define objects or functions with internal linkage
should be unique.

FC+E

Types Support

6.1 Bit-fields shall only be declared with an appropriate type. FC+E

The rule takes as argument a semicolon-separated list of basic integer
types that are accepted as bitfield types. The default is ’int’.

6.2 Single-bit named bit fields shall not be of a signed type. FC+E

Literals and constants Support

7.1 Octal constants shall not be used. FC+E

7.2 A "u" or "U" suffix shall be applied to all integer constants that
are represented in an unsigned type.

FC+E

7.3 The lowercase character "l" shall not be used in a literal suffix. FC+E

7.4 A string literal shall not be assigned to an object unless the object’s
type is "pointer to const-qualified char".

FC+E

Declarations and definitions Support

8.1 Types shall be explicitly specified. FC+E

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA C:2012 9

Chapter 2: MISRA C:2012

Declarations and definitions Support

. . . continued

8.2 Function types shall be in prototype form with named parame-
ters.

FC+E

8.3 All declarations of an object or function shall use the same names
and type qualifiers.

FC+E

8.4 A compatible declaration shall be visible when an object or func-
tion with external linkage is defined.

FC+E

8.5 An external object or function shall be declared once in one and
only one file.

FC+E

8.6 An identifier with external linkage shall have exactly one external
definition.

FC+E

8.7 Functions and objects should not be defined with external linkage
if they are referenced in only one translation unit.

FC+E

8.8 The static storage class specifier shall be used in all declarations
of objects and functions that have internal linkage.

FC+E

8.9 An object should be defined at block scope if its identifier only
appears in a single function.

FC+E

8.10 An inline function shall be declared with the static storage class. FC+E

8.11 When an array with external linkage is declared, its size should
be explicitly specified.

FC+E

8.12 Within an enumerator list, the value of an implicitly-specified
enumeration constant shall be unique.

FC+E

8.13 A pointer should point to a const-qualified type whenever possi-
ble.

PC

8.14 The restrict type qualifier shall not be used. FC+E

Initialization Support

9.1 The value of an object with automatic storage duration shall not
be read before it has been set.

PC

Without Astrée, this rule is checked only partially and with reduced
precision.

9.2 The initializer for an aggregate or union shall be enclosed in
braces.

FC+E

continues on the next page. . .

10 QA Systems GmbH

Chapter 2: MISRA C:2012

Initialization Support

. . . continued

9.3 Arrays shall not be partially initialized. FC+E

9.4 An element of an object shall not be initialized more than once. FC+E

9.5 Where designated initializers are used to initialize an array object
the size of the array shall be specified explicitly.

FC+E

The essential type model Support

10.1 Operands shall not be of an inappropriate essential type. FC

Some violations of that rule (especially use of floating points with integer
operators) are rejected by the frontend as language error.

10.2 Expressions of essentially character type shall not be used inap-
propriately in addition and subtraction operations.

FC+E

10.3 The value of an expression shall not be assigned to an object with
a narrower essential type or of a different essential type category.

FC+E

10.4 Both operands of an operator in which the usual arithmetic con-
versions are performed shall have the same essential type cate-
gory.

FC+E

10.5 The value of an expression should not be cast to an inappropriate
essential type.

FC+E

10.6 The value of a composite expression shall not be assigned to an
object with wider essential type.

FC+E

10.7 If a composite expression is used as one operand of an operator
in which the usual arithmetic conversions are performed then
the other operand shall not have wider essential type.

FC+E

10.8 The value of a composite expression shall not be cast to a different
essential type category or a wider essential type.

FC+E

Pointer type conversions Support

11.1 Conversions shall not be performed between a pointer to a func-
tion and any other type.

FC+E

11.2 Conversions shall not be performed between a pointer to an
incomplete type and any other type.

FC+E

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA C:2012 11

Chapter 2: MISRA C:2012

Pointer type conversions Support

. . . continued

11.3 A cast shall not be performed between a pointer to object type
and a pointer to a different object type.

FC+E

11.4 A conversion should not be performed between a pointer to object
and an integer type.

FC+E

11.5 A conversion should not be performed from pointer to void into
pointer to object.

FC+E

11.6 A cast shall not be performed between pointer to void and an
arithmetic type.

FC+E

11.7 A cast shall not be performed between pointer to object and a
non-integer arithmetic type.

FC+E

11.8 A cast shall not remove any const or volatile qualification from
the type pointed to by a pointer.

FC+E

11.9 The macro NULL shall be the only permitted form of integer null
pointer constant.

FC+E

Expressions Support

12.1 The precedence of operators within expressions should be made
explicit.

FC+E

12.2 The right hand operand of a shift operator shall lie in the range
zero to one less than the width in bits of the essential type of the
left hand operand.

PC

12.3 The comma operator should not be used. FC+E

12.4 Evaluation of constant expressions should not lead to unsigned
integer wrap-around.

FC+E

Side effects Support

13.1 Initializer lists shall not contain persistent side effects. PC

File modifications are not taken into account.

13.2 The value of an expression and its persistent side effects shall be
the same under all permitted evaluation orders.

PC

File modifications are not taken into account.

continues on the next page. . .

12 QA Systems GmbH

Chapter 2: MISRA C:2012

Side effects Support

. . . continued

13.3 A full expression containing an increment (++) or decrement (--)
operator should have no other potential side effects other than
that caused by the increment or decrement operator.

FC+E

13.4 The result of an assignment operator should not be used. FC+E

13.5 The right hand operand of a logical && or || operator shall not
contain persistent side effects.

PC

File modifications are not taken into account.

13.6 The operand of the sizeof operator shall not contain any expres-
sion which has potential side effects.

FC+E

Control statement expressions Support

14.1 A loop counter shall not have essentially floating type. PC

14.2 A for loop shall be well-formed. PC

Only the side effect criterion for loop condition expressions is checked.
File modifications are not taken into account.

14.3 Controlling expressions shall not be invariant. PC

Violations of this rule are reported for expressions that can be proven to
be invariant by the analyzer. It cannot be guaranteed that all invariant
expressions are reported. Without Astrée, this rule is checked with
reduced coverage.

14.4 The controlling expression of an if statement and the control-
ling expression of an iteration- statement shall have essentially
Boolean type.

FC+E

Control flow Support

15.1 The goto statement should not be used. FC+E

15.2 The goto statement shall jump to a label declared later in the
same function.

FC+E

15.3 Any label referenced by a goto statement shall be declared in the
same block, or in any block enclosing the goto statement.

FC+E

15.4 There should be no more than one break or goto statement used
to terminate any iteration statement.

FC+E

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA C:2012 13

Chapter 2: MISRA C:2012

Control flow Support

. . . continued

15.5 A function should have a single point of exit at the end. FC+E

15.6 The body of an iteration-statement or a selection-statement shall
be a compound-statement.

FC+E

15.7 All if ... else if constructs shall be terminated with an else state-
ment.

FC+E

Switch statements Support

16.1 All switch statements shall be well-formed. FC+E

16.2 A switch label shall only be used when the most closely-enclosing
compound statement is the body of a switch statement.

FC+E

The required content of the respective default clause (comment or state-
ment, see amplification of this rule) is currently not checked because of
the absence of comments in preprocessed code.

16.3 An unconditional break statement shall terminate every switch-
clause.

FC+E

16.4 Every switch statement shall have a default label. PC

The required content of the respective default clause (comment or state-
ment, see amplification of this rule) is currently not checked because of
the absence of comments in preprocessed code.

16.5 A default label shall appear as either the first or the last switch
label of a switch statement.

FC+E

16.6 Every switch statement shall have at least two switch-clauses. FC+E

16.7 A switch-expression shall not have essentially Boolean type. FC+E

Functions Support

17.1 The features of <stdarg.h> shall not be used. FC+E

17.2 Functions shall not call themselves, either directly or indirectly. PC

17.3 A function shall not be declared implicitly. FC+E

17.4 All exit paths from a function with non-void return type shall
have an explicit return statement with an expression.

FC+E

continues on the next page. . .

14 QA Systems GmbH

Chapter 2: MISRA C:2012

Functions Support

. . . continued

17.5 The function argument corresponding to a parameter declared to
have an array type shall have an appropriate number of elements.

PC

17.6 The declaration of an array parameter shall not contain the static
keyword between the [].

FC+E

17.7 The value returned by a function having non-void return type
shall be used.

FC+E

17.8 A function parameter shall not be modified. PC

Violations of this rule are only reported for explicit assignments to
identifiers declared as parameter. Modifications of parameters via
pointers (e.g. by called functions) are not reported.

Pointers and arrays Support

18.1 A pointer resulting from arithmetic on a pointer operand shall
address an element of the same array as that pointer operand.

PC

This rule check is supported by Astrée’s semantic analysis: Astrée re-
ports all invalid pointer dereferences (including out-of-bound accesses)
resulting from violations of this rule.

18.2 Subtraction between pointers shall only be applied to pointers
that address elements of the same array.

PC

There is no warning when subtracting pointers that point to different
fields of the same structure. This rule check is supported by Astrée’s
semantic analysis: Astrée reports all invalid pointer dereferences (in-
cluding out-of-bound accesses) resulting from violations of this rule.

18.3 The relational operators >, >=, < and <= shall not be applied to
objects of pointer type except where they point into the same
object.

PC

18.4 The +, -, += and -= operators should not be applied to an expression
of pointer type.

FC+E

18.5 Declarations should contain no more than two levels of pointer
nesting.

FC+E

18.6 The address of an object with automatic storage shall not be
copied to another object that persists after the first object has
ceased to exist.

PC

18.7 Flexible array members shall not be declared. FC+E

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA C:2012 15

Chapter 2: MISRA C:2012

Pointers and arrays Support

. . . continued

18.8 Variable-length array types shall not be used. FC+E

Overlapping storage Support

19.1 An object shall not be assigned or copied to an overlapping object. PC

This rule check is supported by Astrée’s semantic analysis: Astrée allows
for detecting additional classes of violations of this rule on top of the
syntax-based checks. Without Astrée, this rule is checked with reduced
coverage.

19.2 The union keyword should not be used. FC+E

Preprocessing directives Support

20.1 #include directives should only be preceded by preprocessor
directives or comments.

FC+E

20.2 The ’, " or \ characters and the /* or // character sequences shall
not occur in a header file name.

FC+E

20.3 The #include directive shall be followed by either a <filename>
or "filename" sequence.

FC+E

20.4 A macro shall not be defined with the same name as a keyword. FC+E

20.5 #undef should not be used. FC+E

20.6 Tokens that look like a preprocessing directive shall not occur
within a macro argument.

FC+E

20.7 Expressions resulting from the expansion of macro parameters
shall be enclosed in parentheses.

FC+E

20.8 The controlling expression of a #if or #elif preprocessing directive
shall evaluate to 0 or 1.

FC+E

20.9 All identifiers used in the controlling expression of #if or #elif
preprocessing directives shall be #define’d before evaluation.

FC+E

20.10 The # and ## preprocessor operators should not be used. FC+E

20.11 A macro parameter immediately following a # operator shall not
immediately be followed by a ## operator.

FC+E

continues on the next page. . .

16 QA Systems GmbH

Chapter 2: MISRA C:2012

Preprocessing directives Support

. . . continued

20.12 A macro parameter used as an operand to the # or ## operators,
which is itself subject to further macro replacement, shall only
be used as an operand to these operators.

FC+E

20.13 A line whose first token is # shall be a valid preprocessing direc-
tive.

FC+E

20.14 All #else, #elif and #endif preprocessor directives shall reside in
the same file as the #if, #ifdef or #ifndef directive to which they
are related.

FC+E

Standard libraries Support

21.1 #define and #undef shall not be used on a reserved identifier or
reserved macro name.

FC+E

21.2 A reserved identifier or macro name shall not be declared. FC+E

21.3 The memory allocation and deallocation functions of <stdlib.h>
shall not be used.

FC+E

21.4 The standard header file <setjmp.h> shall not be used. FC+E

21.5 The standard header file <signal.h> shall not be used. FC+E

21.6 The Standard Library input/output functions shall not be used. FC+E

21.7 The atof, atoi, atol and atoll functions of <stdlib.h> shall not be
used.

FC+E

21.8 The standard library functions abort, exit, getenv and system of
<stdlib.h> shall not be used.

FC+E

21.9 The standard library functions bsearch and qsort of <stdlib.h>
shall not be used.

FC+E

21.10 The Standard Library time and date functions shall not be used. FC+E

21.11 The standard header file <tgmath.h> shall not be used. FC+E

21.12 The exception handling features of <fenv.h> should not be used. FC+E

Resources Support

22.1 All resources obtained dynamically by means of Standard Library
functions shall be explicitly released.

PC

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA C:2012 17

Chapter 2: MISRA C:2012

Resources Support

. . . continued

22.2 A block of memory shall only be freed if it was allocated by means
of a Standard Library function.

PC

22.3 The same file shall not be open for read and write access at the
same time on different streams.

PC

Can be validated by the run-time error analysis using appropriate stub
implementations.

22.4 There shall be no attempt to write to a stream which has been
opened as read-only.

PC

22.5 A pointer to a FILE object shall not be dereferenced. PC

22.6 The value of a pointer to a FILE shall not be used after the associ-
ated stream has been closed.

PC

18 QA Systems GmbH

3 MISRA C:2012 Amendment 1

Coding guideline checks can be executed with or without runtime error analysis. Coupling QA-MISRA
with Astrée’s runtime error analysis can raise the degree to which a coding guideline is supported.

The following table shows the degree of rule support for each rule assuming no coupling. Detailed
information on the degree of support when coupled with Astrée can be found in the dedicated a3 for
C/C++ Compliance documentation.

Directives Support

D.4.14 The validity of values received from external sources shall be
checked.

PC

Expressions Support

12.5 The sizeof operator shall not have an operand which is a function
parameter declared as "array of type".

FC+E

Standard libraries Support

21.8 The standard library functions abort, exit and system of <stdlib.h>
shall not be used.

FC+E

21.13 Any value passed to a function in <ctype.h> shall be representable
as an unsigned char or be the value EOF.

PC

21.14 The Standard Library function memcmp shall not be used to
compare null terminated strings.

PC

21.15 The pointer arguments to the Standard Library functions mem-
cpy, memmove and memcmp shall be pointers to qualified or
unqualified versions of compatible types.

PC

21.16 The pointer arguments to the Standard Library function memcmp
shall point to either a pointer type, an essentially signed type,
an essentially unsigned type, an essentially Boolean type or an
essentially enum type.

PC

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA C:2012 19

Chapter 3: MISRA C:2012 Amendment 1

Standard libraries Support

. . . continued

21.17 Use of the string handling functions from <string.h> shall not
result in accesses beyond the bounds of the objects referenced
by their pointer parameters.

PC

Violations of this rule which cause a runtime error are reported by
Astrée.

21.18 The size_t argument passed to any function in <string.h> shall
have an appropriate value.

PC

Violations of this rule which cause a runtime error are reported by
Astrée.

21.19 The pointers returned by the Standard Library functions locale-
conv, getenv, setlocale or, strerror shall only be used as if they
have pointer to const-qualified type.

PC

21.20 The pointer returned by the Standard Library functions asctime,
ctime, gmtime, localtime, localeconv, getenv, setlocale or strerror
shall not be used following a subsequent call to the same function.

PC

Resources Support

22.7 The macro EOF shall only be compared with the unmodified
return value from any Standard Library function capable of re-
turning EOF.

PC

22.8 The value of errno shall be set to zero prior to a call to an errno-
setting-function.

PC

22.9 The value of errno shall be tested against zero after calling an
errno-setting-function.

PC

22.10 The value of errno shall only be tested when the last function to
be called was an errno-setting-function.

PC

20 QA Systems GmbH

4 MISRA C:2012 Amendment 2

Coding guideline checks can be executed with or without runtime error analysis. Coupling QA-MISRA
with Astrée’s runtime error analysis can raise the degree to which a coding guideline is supported.

The following table shows the degree of rule support for each rule assuming no coupling. Detailed
information on the degree of support when coupled with Astrée can be found in the dedicated a3 for
C/C++ Compliance documentation.

A standard C environment Support

1.4 Emergent language features shall not be used. PC

Standard libraries Support

21.3 The memory allocation and deallocation functions of <stdlib.h>
shall not be used.

FC+E

21.8 The Standard Library termination functions of <stdlib.h> shall
not be used.

FC+E

21.21 The Standard Library function system of <stdlib.h> shall not be
used.

FC+E

QA-MISRA Compliance Matrices for MISRA C:2012 21

5 MISRA C:2012 Amendment 3

Coding guideline checks can be executed with or without runtime error analysis. Coupling QA-MISRA
with Astrée’s runtime error analysis can raise the degree to which a coding guideline is supported.

The following table shows the degree of rule support for each rule assuming no coupling. Detailed
information on the degree of support when coupled with Astrée can be found in the dedicated a3 for
C/C++ Compliance documentation.

Directives Support

D.4.15 Evaluation of floating-point expressions shall not lead to the un-
detected generation of infinities and NaNs.

NC

A standard C environment Support

1.4 Emergent language features shall not be used. PC

1.5 Obsolescent language features shall not be used. PC

The checks for this rule comprise all statically detectable obsolescent
language features.

Types Support

6.3 A bit field shall not be declared as a member of a union. FC+E

Literals and constants Support

7.5 The argument of an integer constant macro shall have an appro-
priate form.

FC+E

Declarations and definitions Support

8.15 All declarations of an object with an explicit alignment specifica-
tion shall specify the same alignment.

FC

continues on the next page. . .

22 QA Systems GmbH

Chapter 5: MISRA C:2012 Amendment 3

Declarations and definitions Support

. . . continued

8.16 The alignment specification of zero should not appear in an object
declaration.

FC

8.17 At most one explicit alignment specifier should appear in an
object declaration.

FC

The essential type model Support

10.1 Operands shall not be of an inappropriate essential type. FC

Some violations of that rule (especially use of floating points with integer
operators) are rejected by the frontend as language error.

Functions Support

17.9 A function declared with a _Noreturn function specifier shall not
return to its caller.

FC

17.10 A function declared with a _Noreturn function specifier shall
have void return type.

FC

17.11 A function that never returns should be declared with a _Noreturn
function specifier.

PC

17.12 A function identifier should only be used with either a preceding
&, or with a parenthesized parameter list.

FC

17.13 A function type shall not be type qualified. FC

Pointers and arrays Support

18.9 An object with temporary lifetime shall not undergo array-to-
pointer conversion.

PC

Standard libraries Support

21.11 The standard header file <tgmath.h> shall not be used. FC

21.12 The standard header file <fenv.h> shall not be used. FC

21.22 All operand arguments to any type-generic macros declared in
<tgmath.h> shall have an appropriate essential type.

FC

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA C:2012 23

Chapter 5: MISRA C:2012 Amendment 3

Standard libraries Support

. . . continued

21.23 All operand arguments to any multi-argument type-generic
macros declared in <tgmath.h> shall have the same standard
type.

FC

21.24 The random number generator functions of <stdlib.h> shall not
be used.

FC

Generic selections Support

23.1 A generic selection should only be expanded from a macro. FC

23.2 A generic selection that is not expanded from a macro shall not
contain potential side effects in the controlling expression.

FC+E

23.3 A generic selection should contain at least one non-default asso-
ciation.

FC+E

23.4 A generic association shall list an appropriate type. FC+E

23.5 A generic selection should not depend on implicit pointer type
conversion.

FC+E

23.6 The controlling expression of a generic selection shall have an
essential type that matches its standard type.

FC+E

23.7 A generic selection that is expanded from a macro should evaluate
its argument only once.

NC

23.8 A default association shall appear as either the first or the last
association of a generic selection.

FC+E

24 QA Systems GmbH

https://www.qa-systems.com/qa-misra-tool-trial/
https://www.qa-systems.com/tools/qa-misra/
mailto:sales@qa-systems.com

Bibliography

[1] MISRA Limited. MISRA-C:2004 Guidelines for the use of the C language in critical systems. ISBN
978-0-9524156-4-0, October 2004.

[2] MISRA Limited. MISRA-C:2012 Guidelines for the use of the C language in critical systems. ISBN
978-1-906400-11-8, March 2013.

[3] QA Systems GmbH. QA-MISRA – User Documentation. Version 23.04, Build 13183398, April 18, 2023.

[4] AUTOSAR. Guidelines for the use of the C++14 language in critical and safety-related systems (release
19-03). Release 19-03, March 2019.

[5] Carnegie Mellon University. SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and
Secure Systems. 2016.

[6] ISO. ISO/IEC TS 17961:2013(E): Information Technology–Programming Languages, Their Environ-
ments and System Software Interfaces–C Secure Coding Rules. November 2013.

QA-MISRA Compliance Matrices for MISRA C:2012 25

	Title Page
	Contents
	1 Introduction
	1.1 Terms and Definitions
	1.2 Coverage

	2 MISRA C:2012
	3 MISRA C:2012 Amendment 1
	4 MISRA C:2012 Amendment 2
	5 MISRA C:2012 Amendment 3
	Bibliography

