
QA-MISRA

Compliance Matrices for

MISRA C++:2008
AUTOSAR C++14

Release 23.04, b13183398

April 18, 2023

QA Systems GmbH
powered by AbsInt Angewandte Informatik GmbH

CONTACT:

QA Systems GmbH
support@qa-systems.com
www.qa-systems.com
www.qa-systems.de/tools/qa-misra/

COPYRIGHT NOTICE:

© QA Systems GmbH

The product name QA-MISRA is a registered trademark of QA Systems GmbH. "MISRA" and "MISRA C" are
registered trademarks owned by The MISRA Consortium Ltd., held on behalf of the MISRA Consortium.
QA-MISRA is an independent tool of QA Systems and is not associated with the MISRA Consortium.

All rights reserved. This document, or parts of it, or modified versions of it, may not be copied, reproduced
or transmitted in any form, or by any means, or stored in a retrieval system, or used for any purpose,
without the prior written permission of QA Systems GmbH.

The information contained in this document is subject to change without notice.

LIMITATION OF LIABILITY:

Every effort has been taken in manufacturing the product supplied and drafting the accompanying docu-
mentation.

QA Systems GmbH makes no warranty or representation, either expressed or implied, with respect to the
software, including its quality, performance, merchantability, or fitness for a particular purpose. The entire
risk as to the quality and performance of the software lies with the licensee.

Because software is inherently complex and may not be completely free of errors, the licensee is advised to
verify his work where appropriate. In no event will QA Systems GmbH be liable for any damages whatsoever
including – but not restricted to – lost revenue or profits or other direct, indirect, special, incidental, cover,
or consequential damages arising out of the use of or inability to use the software, even if advised of the
possibility of such damages, except to the extent invariable law, if any, provides otherwise.

QA Systems GmbH also does not recognize any warranty or update claims unless explicitly provided for
otherwise in a special agreement.

Known Safety Issues:

www.absint.com/known-issues/qa-misra/23.04.md

2 QA Systems GmbH

mailto:support@qa-systems.com
http://www.qa-systems.com
http://www.qa-systems.de/tools/qa-misra/
http://www.absint.com/known-issues/qa-misra/23.04.md

Contents

1 Introduction 4
1.1 Terms and Definitions . 4

2 MISRA C++:2008 6

3 AUTOSAR C++14 22

Bibliography 50

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 3

1 Introduction

QA-MISRA is a static analyzer that checks for violations of coding guidelines such as MISRA. It supports
the MISRA-C:2004, MISRA C:2012, MISRA C++:2008, AUTOSAR C++14, ISO/IEC TS 17961:2013, CERT, JSF AV
C++, and CWE rule sets, as well as rules for coding style and thresholds for code metrics.

Astrée (https://www.absint.com/astree/index.htm) is a static code analyzer that proves the ab-
sence of runtime errors and invalid concurrent behavior in safety-critical software written or generated
in C or C++. Astrée and QA-MISRA can be seamlessly integrated. Using QA-MISRA in conjunction with the
sound semantic analyses offered by Astrée guarantees zero false negatives and minimizes false positives
on semantical rules.

1.1 Terms and Definitions

If not stated otherwise for a specific set of guidelines, the degree of rule support is classified as follows.

fully checked A rule is fully checked (FC) if the checks adhere exactly to the rule text and the analysis
will never miss a rule violation. For fully checked rules, absence of alarms means the tool can prove the
absence of violations of this rule. False alarms may be issued.

This degree of support may be raised to fully checked + exact (FC+E) if the absence of false alarms can be
guaranteed.

partially checked A rule is partially checked (PC) if the checks either check only some aspects or a
(simplifying) reformulation of the rule (text) and/or the rule may miss rule violations. For partially
checked rules, absence of alarms does not imply absence of rule violations. False alarms may be issued.

This degree of support may be raised to partially checked + soundly supported (PC + S) if activating Astrée’s
semantic analysis underpins the rule check by issuing semantic alarms for violations of the rule and
by proving the absence of violations of some aspects of the rule or if the analyzer’s frontend implicitly
checks some aspects of the rule.

(soundly) supported A rule is classified as (soundly) supported (S) if there are no dedicated checks, but
an analysis run may produce evidence whether or not the rule is broken. This compliance level may
require that the user provides appropriate analysis stubs.

For example, the rule "No reliance shall be placed on undefined or unspecified behavior." (MISRA-C:2004,
rule 1.2) is supported by Astrée because Astrée reports undefined and unspecified behavior.

4 QA Systems GmbH

https://www.absint.com/astree/index.htm

Chapter 1: Introduction
1.1 Terms and Definitions

not checked A rule is not checked (NC) if there are no dedicated checks and checking the rule is not
supported by the analyzer.

Coding guideline checks can be executed with or without runtime error analysis. Coupling QA-MISRA
with Astrée’s runtime error analysis can raise the degree to which a coding guideline is supported.

The following table shows the degree of rule support for each rule assuming no coupling. Detailed
information on the degree of support when coupled with Astrée can be found in the dedicated a3 for
C/C++ Compliance documentation.

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 5

2 MISRA C++:2008

Coding guideline checks can be executed with or without runtime error analysis. Coupling QA-MISRA
with Astrée’s runtime error analysis can raise the degree to which a coding guideline is supported.

The following table shows the degree of rule support for each rule assuming no coupling. Detailed
information on the degree of support when coupled with Astrée can be found in the dedicated a3 for
C/C++ Compliance documentation.

In total, 189 rules of the rule set – i. e. 82% of all 228 rules – are checked:

All Rules Required Advisory Documentation
fully checked 136 (59 %) 125 (63 %) 10 (55 %) 1 (8 %)
partially checked 51 (22 %) 46 (23 %) 4 (22 %) 1 (8 %)
implicitly checkable 2 (0 %) 1 (0 %) 0 (0 %) 1 (8 %)
not checked 39 (17 %) 26 (13 %) 4 (22 %) 9 (75 %)

Language independent issues Support

0.1.1 A project shall not contain unreachable code. PC

Violations of this rule are reported for code that cannot be reached by
the analyzer. Such code is definitely unreachable except if the analysis
terminated prematurely because of an error. It cannot be guaranteed
that all unreachable code is reported.

0.1.2 A project shall not contain infeasible paths. PC

0.1.3 A project shall not contain unused variables. PC

0.1.4 A project shall not contain non-volatile POD variables having only
one use.

FC+E

0.1.5 A project shall not contain unused type declarations. PC

0.1.6 A project shall not contain instances of non-volatile variables
being given values that are never subsequently used.

PC

0.1.7 The value returned by a function having a non-void return type
that is not an overloaded operator shall always be used.

FC+E

0.1.8 All functions with void return type shall have external side ef-
fect(s).

NC

0.1.9 There shall be no dead code. PC

continues on the next page. . .

6 QA Systems GmbH

Chapter 2: MISRA C++:2008

Language independent issues Support

. . . continued

0.1.10 Every defined function shall be called at least once. PC

0.1.11 There shall be no unused parameters (named or unnamed) in
non-virtual functions.

PC

0.1.12 There shall be no unused parameters (named or unnamed) in the
set of parameters for a virtual function and all the functions that
override it.

NC

0.2.1 An object shall not be assigned to an overlapping object. PC

0.3.1 Minimization of run-time failures shall be ensured by the use of
at least one of: (a) static analysis tools/techniques; (b) dynamic
analysis tools/techniques; (c) explicit coding of checks to handle
run-time faults.

NC

0.3.2 If a function generates error information, then that error infor-
mation shall be tested.

PC

0.4.1 Use of scaled-integer or fixed-point arithmetic shall be docu-
mented.

NC

0.4.2 Use of floating-point arithmetic shall be documented. NC

0.4.3 Floating-point implementations shall comply with a defined
floating-point standard.

NC

General Support

1.0.1 All code shall conform to ISO/IEC 14882:2003 "The C++ Standard
Incorporating Technical Corrigendum 1".

S

The frontend rejects in large part violations of ISO/IEC 14882.

1.0.2 Multiple compilers shall only be used if they have a common,
defined interface.

NC

This rule applies to the used compiler and cannot be checked at the
source code level.

1.0.3 The implementation of integer division in the chosen compiler
shall be determined and documented.

NC

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 7

Chapter 2: MISRA C++:2008

Lexical conventions Support

2.2.1 The character set and the corresponding encoding shall be docu-
mented.

NC

2.3.1 Trigraphs shall not be used. FC+E

2.5.1 Digraphs should not be used. FC+E

2.7.1 The character sequence /* shall not be used within a C-style com-
ment.

FC+E

2.7.2 Sections of code shall not be "commented out" using C-style com-
ments.

NC

2.7.3 Sections of code should not be "commented out" using C++ com-
ments.

NC

2.10.1 Different identifiers shall be typographically unambiguous. FC+E

2.10.2 Identifiers declared in an inner scope shall not hide an identifier
declared in an outer scope.

PC

2.10.3 A typedef name (including qualification, if any) shall be a unique
identifier.

FC+E

2.10.4 A class, union or enum name (including qualification, if any) shall
be a unique identifier.

FC+E

2.10.5 The identifier name of a non-member object or function with
static storage duration should not be reused.

NC

2.10.6 If an identifier refers to a type, it shall not also refer to an object
or a function in the same scope.

NC

2.13.1 Only those escape sequences that are defined in ISO/IEC
14882:2003 shall be used.

PC

2.13.2 Octal constants (other than zero) and octal escape sequences
(other than "\0") shall not be used.

FC+E

2.13.3 A "U" suffix shall be applied to all octal or hexadecimal integer
literals of unsigned type.

PC

2.13.4 Literal suffixes shall be upper case. FC+E

2.13.5 Narrow and wide string literals shall not be concatenated. FC+E

Basic concepts Support

3.1.1 It shall be possible to include any header file in multiple transla-
tion units without violating the One Definition Rule.

NC

continues on the next page. . .

8 QA Systems GmbH

Chapter 2: MISRA C++:2008

Basic concepts Support

. . . continued

3.1.2 Functions shall not be declared at block scope. FC+E

3.1.3 When an array is declared, its size shall either be stated explicitly
or defined implicitly by initialization.

FC+E

3.2.1 All declarations of an object or function shall have compatible
types.

PC

3.2.2 The One Definition Rule shall not be violated. PC

3.2.3 A type, object or function that is used in multiple translation units
shall be declared in one and only one file.

FC+E

3.2.4 An identifier with external linkage shall have exactly one defini-
tion.

PC

3.3.1 Objects or functions with external linkage shall be declared in a
header file.

FC+E

3.3.2 If a function has internal linkage then all re-declarations shall
include the static storage class specifier.

FC+E

3.4.1 An identifier declared to be an object or type shall be defined in
a block that minimizes its visibility.

NC

3.9.1 The types used for an object, a function return type, or a function
parameter shall be token-for-token identical in all declarations
and re-declarations.

PC

3.9.2 Typedefs that indicate size and signedness should be used in place
of the basic numerical types.

PC

Only use of typedefs is checked, not whether their names indicate size
and signedness. This rule check is supported by Astrée’s semantic anal-
ysis: Astrée reports overflows resulting from incorrect assumptions
about the size/signedness of numerical types.

3.9.3 The underlying bit representations of floating-point values shall
not be used.

PC

Standard conversions Support

4.5.1 Expressions with type bool shall not be used as operands to built-
in operators other than the assignment operator =, the logical
operators &&, ||, !, the equality operators == and !=, the unary &
operator, and the conditional operator.

FC+E

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 9

Chapter 2: MISRA C++:2008

Standard conversions Support

. . . continued

4.5.2 Expressions with type enum shall not be used as operands to
built-in operators other than the subscript operator [], the assign-
ment operator =, the equality operators == and !=, the unary &
operator,and the relational operators <, <=, >, >=.

FC+E

4.5.3 Expressions with type (plain) char and wchar_t shall not be used
as operands to built-in operators other than the assignment oper-
ator =, the equality operators == and !=, and the unary & operator.

FC+E

4.10.1 NULL shall not be used as an integer value. FC+E

4.10.2 Literal zero (0) shall not be used as the null-pointer-constant. FC+E

Expressions Support

5.0.1 The value of an expression shall be the same under any order of
evaluation that the standard permits.

PC

5.0.2 Limited dependence should be placed on C++ operator prece-
dence rules in expressions.

PC

5.0.3 A cvalue expression shall not be implicitly converted to a different
underlying type.

FC+E

5.0.4 An implicit integral conversion shall not change the signedness
of the underlying type.

FC+E

5.0.5 There shall be no implicit floating-integral conversions. FC+E

5.0.6 An implicit integral or floating-point conversion shall not reduce
the size of the underlying type.

FC+E

5.0.7 There shall be no explicit floating-integral conversions of a cvalue
expression.

FC+E

5.0.8 An explicit integral or floating-point conversion shall not increase
the size of the underlying type of a cvalue expression.

FC+E

5.0.9 An explicit integral conversion shall not change the signedness
of the underlying type of a cvalue expression.

FC+E

5.0.10 If the bitwise operators ~ and << are applied to an operand with
an underlying type of unsigned char or unsigned short, the result
shall be immediately cast to the underlying type of the operand.

FC+E

5.0.11 The plain char type shall only be used for the storage and use of
character values.

FC+E

continues on the next page. . .

10 QA Systems GmbH

Chapter 2: MISRA C++:2008

Expressions Support

. . . continued

5.0.12 signed char and unsigned char type shall only be used for the
storage and use of numeric values.

FC+E

5.0.13 The condition of an if-statement and the condition of an iteration-
statement shall have type bool.

FC+E

5.0.14 The first operand of a conditional-operator shall have type bool. FC+E

5.0.15 Array indexing shall be the only form of pointer arithmetic. PC

5.0.16 A pointer operand and any pointer resulting from pointer arith-
metic using that operand shall both address elements of the same
array.

NC

5.0.17 Subtraction between pointers shall only be applied to pointers
that address elements of the same array.

NC

5.0.18 >, >=, <, <= shall not be applied to objects of pointer type, except
where they point to the same array.

NC

5.0.19 The declaration of objects shall contain no more than two levels
of pointer indirection.

FC+E

5.0.20 Non-constant operands to a binary bitwise operator shall have
the same underlying type.

FC+E

5.0.21 Bitwise operators shall only be applied to operands of unsigned
underlying type.

FC+E

5.2.1 Each operand of a logical && or || shall be a postfix expression. FC+E

5.2.2 A pointer to a virtual base class shall only be cast to a pointer to
a derived class by means of dynamic_cast.

FC+E

5.2.3 Casts from a base class to a derived class should not be performed
on polymorphic types.

FC+E

5.2.4 C-style casts (other than void casts) and functional notation casts
(other than explicit constructor calls) shall not be used.

FC+E

5.2.5 A cast shall not remove any const or volatile qualification from
the type of a pointer or reference.

FC+E

5.2.6 A cast shall not convert a pointer to a function to any other pointer
type, including a pointer to function type.

FC+E

5.2.7 An object with pointer type shall not be converted to an unrelated
pointer type, either directly or indirectly.

PC

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 11

Chapter 2: MISRA C++:2008

Expressions Support

. . . continued

Indirect conversion, e.g. via intermediate integral types, is undecidable
and thus not covered.

5.2.8 An object with integer type or pointer to void type shall not be
converted to an object with pointer type.

FC+E

5.2.9 A cast should not convert a pointer type to an integral type. FC+E

5.2.10 The increment (++) and decrement (--) operators should not be
mixed with other operators in an expression.

FC+E

5.2.11 The comma operator, && operator and the || operator shall not
be overloaded.

FC+E

5.2.12 An identifier with array type passed as a function argument shall
not decay to a pointer.

FC+E

5.3.1 Each operand of the ! operator, the logical && or the logical ||
operators shall have type bool.

FC+E

5.3.2 The unary minus operator shall not be applied to an expression
whose underlying type is unsigned.

FC+E

5.3.3 The unary & operator shall not be overloaded. FC+E

5.3.4 Evaluation of the operand to the sizeof operator shall not contain
side effects.

FC

5.8.1 The right hand operand of a shift operator shall lie between zero
and one less than the width in bits of the underlying type of the
left hand operand.

PC

5.14.1 The right hand operand of a logical && or || operator shall not
contain side effects.

FC

5.17.1 The semantic equivalence between a binary operator and its
assignment operator form shall be preserved.

NC

5.18.1 The comma operator shall not be used. FC+E

5.19.1 Evaluation of constant unsigned integer expressions should not
lead to wrap-around.

NC

Statements Support

6.2.1 Assignment operators shall not be used in sub-expressions. FC+E

continues on the next page. . .

12 QA Systems GmbH

Chapter 2: MISRA C++:2008

Statements Support

. . . continued

6.2.2 Floating-point expressions shall not be directly or indirectly tested
for equality or inequality.

PC

6.2.3 Before preprocessing, a null statement shall only occur on a line
by itself; it may be followed by a comment, provided that the first
character following the null statement is a white-space character.

FC+E

6.3.1 The statement forming the body of a switch, while, do ... while or
for statement shall be a compound statement.

FC+E

6.4.1 An if (condition) construct shall be followed by a compound state-
ment. The else keyword shall be followed by either a compound
statement, or another if statement.

FC+E

6.4.2 All if ... else if constructs shall be terminated with an else clause. FC+E

6.4.3 A switch statement shall be a well-formed switch statement. FC+E

6.4.4 A switch-label shall only be used when the most closely-enclosing
compound statement is the body of a switch statement.

FC+E

6.4.5 An unconditional throw or break statement shall terminate every
non-empty switch-clause.

FC+E

6.4.6 The final clause of a switch statement shall be the default-clause. FC+E

6.4.7 The condition of a switch statement shall not have bool type. FC+E

6.4.8 Every switch statement shall have at least one case-clause. FC+E

6.5.1 A for loop shall contain a single loop-counter which shall not have
floating type.

PC

6.5.2 If loop-counter is not modified by -- or ++, then, within condition,
the loop-counter shall only be used as an operand to <=, <, > or
>=.

PC

6.5.3 The loop-counter shall not be modified within condition or state-
ment.

PC

6.5.4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n;
where n remains constant for the duration of the loop.

PC

6.5.5 A loop-control-variable other than the loop-counter shall not be
modified within condition or expression.

PC

6.5.6 A loop-control-variable other than the loop-counter which is mod-
ified in statement shall have type bool.

PC

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 13

Chapter 2: MISRA C++:2008

Statements Support

. . . continued

6.6.1 Any label referenced by a goto statement shall be declared in the
same block, or in a block enclosing the goto statement.

FC+E

6.6.2 The goto statement shall jump to a label declared later in the
same function body.

FC+E

6.6.3 The continue statement shall only be used within a well-formed
for loop.

PC

6.6.4 For any iteration statement there shall be no more than one break
or goto statement used for loop termination.

FC+E

6.6.5 A function shall have a single point of exit at the end of the func-
tion.

FC+E

Declarations Support

7.1.1 A variable which is not modified shall be const qualified. NC

7.1.2 A pointer or reference parameter in a function shall be declared
as pointer to const or reference to const if the corresponding
object is not modified.

NC

7.2.1 An expression with enum underlying type shall only have values
corresponding to the enumerators of the enumeration.

NC

7.3.1 The global namespace shall only contain main, namespace decla-
rations and extern "C" declarations.

FC+E

7.3.2 The identifier main shall not be used for a function other than
the global function main.

FC+E

7.3.3 There shall be no unnamed namespaces in header files. FC+E

7.3.4 using-directives shall not be used. FC+E

7.3.5 Multiple declarations for an identifier in the same namespace
shall not straddle a using-declaration for that identifier.

FC+E

7.3.6 using-directives and using-declarations (excluding class scope or
function scope using-declarations) shall not be used in header
files.

FC+E

7.4.1 All usage of assembler shall be documented. PC

7.4.2 Assembler instructions shall only be introduced using the asm
declaration.

PC

continues on the next page. . .

14 QA Systems GmbH

Chapter 2: MISRA C++:2008

Declarations Support

. . . continued

7.4.3 Assembly language shall be encapsulated and isolated. FC+E

7.5.1 A function shall not return a reference or a pointer to an auto-
matic variable (including parameters), defined within the func-
tion.

PC

7.5.2 The address of an object with automatic storage shall not be
assigned to another object that may persist after the first object
has ceased to exist.

NC

7.5.3 A function shall not return a reference or a pointer to a parameter
that is passed by reference or const reference.

PC

7.5.4 Functions should not call themselves, either directly or indirectly. PC

Declarators Support

8.0.1 An init-declarator-list or a member-declarator-list shall consist of
a single init-declarator or member-declarator respectively.

FC+E

8.3.1 Parameters in an overriding virtual function shall either use the
same default arguments as the function they override, or else
shall not specify any default arguments.

PC

It is impossible to decide in the general case whether two expressions
initializing the same default argument have the same value.

8.4.1 Functions shall not be defined using the ellipsis notation. FC+E

8.4.2 The identifiers used for the parameters in a re-declaration of a
function shall be identical to those in the declaration.

FC+E

8.4.3 All exit paths from a function with non-void return type shall
have an explicit return statement with an expression.

FC+E

8.4.4 A function identifier shall either be used to call the function or it
shall be preceded by &.

FC+E

8.5.1 All variables shall have a defined value before they are used. PC

8.5.2 Braces shall be used to indicate and match the structure in the
non-zero initialization of arrays and structures.

FC+E

8.5.3 In an enumerator list, the = construct shall not be used to explic-
itly initialize members other than the first, unless all items are
explicitly initialized.

FC+E

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 15

Chapter 2: MISRA C++:2008

Classes Support

9.3.1 const member functions shall not return non-const pointers or
references to class-data.

PC

9.3.2 Member functions shall not return non-const handles to class-
data.

PC

9.3.3 If a member function can be made static then it shall be made
static, otherwise if it can be made const then it shall be made
const.

PC

Violations of this rule are not reported for templates as all possible
instantiations need to be known to decide whether a function can be
made const.

9.5.1 Unions shall not be used. FC+E

9.6.1 When the absolute positioning of bits representing a bit-field is
required, then the behaviour and packing of bit-fields shall be
documented.

NC

9.6.2 Bit-fields shall be either bool type or an explicitly unsigned or
signed integral type.

NC

9.6.3 Bit-fields shall not have enum type. FC+E

9.6.4 Named bit-fields with signed integer type shall have a length of
more than one bit.

FC+E

Derived classes Support

10.1.1 Classes should not be derived from virtual bases. FC+E

10.1.2 A base class shall only be declared virtual if it is used in a diamond
hierarchy.

FC+E

10.1.3 An accessible base class shall not be both virtual and non-virtual
in the same hierarchy.

FC+E

10.2.1 All accessible entity names within a multiple inheritance hierar-
chy should be unique.

PC

10.3.1 There shall be no more than one definition of each virtual func-
tion on each path through the inheritance hierarchy.

FC+E

10.3.2 Each overriding virtual function shall be declared with the virtual
keyword.

FC+E

10.3.3 A virtual function shall only be overridden by a pure virtual
function if it is itself declared as pure virtual.

FC+E

16 QA Systems GmbH

Chapter 2: MISRA C++:2008

Member access control Support

11.0.1 Member data in non-POD class types shall be private. FC+E

Special member functions Support

12.1.1 An object’s dynamic type shall not be used from the body of its
constructor or destructor.

PC

12.1.2 All constructors of a class should explicitly call a constructor for
all of its immediate base classes and all virtual base classes.

FC+E

12.1.3 All constructors that are callable with a single argument of fun-
damental type shall be declared explicit.

FC+E

12.8.1 A copy constructor shall only initialize its base classes and the
non-static members of the class of which it is a member.

FC+E

12.8.2 The copy assignment operator shall be declared protected or
private in an abstract class.

FC+E

Templates Support

14.5.1 A non-member generic function shall only be declared in a names-
pace that is not an associated namespace.

FC+E

14.5.2 A copy constructor shall be declared when there is a template
constructor with a single parameter that is a generic parameter.

FC+E

14.5.3 A copy assignment operator shall be declared when there is a
template assignment operator with a parameter that is a generic
parameter.

FC+E

14.6.1 In a class template with a dependent base, any name that may
be found in that dependent base shall be referred to using a
qualified-id or this->

NC

14.6.2 The function chosen by overload resolution shall resolve to a
function declared previously in the translation unit.

NC

14.7.1 All class templates, function templates, class template member
functions and class template static members shall be instantiated
at least once.

NC

14.7.2 For any given template specialization, an explicit instantiation of
the template with the template-arguments used in the specializa-
tion shall not render the program ill-formed.

NC

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 17

Chapter 2: MISRA C++:2008

Templates Support

. . . continued

14.7.3 All partial and explicit specializations for a template shall be
declared in the same file as the declaration of their primary tem-
plate.

FC+E

14.8.1 Overloaded function templates shall not be explicitly specialized. NC

14.8.2 The viable function set for a function call should either contain no
function specializations, or only contain function specializations.

NC

Exception handling Support

15.0.1 Exceptions shall only be used for error handling. NC

15.0.2 An exception object should not have pointer type. FC+E

15.0.3 Control shall not be transferred into a try or catch block using a
goto or a switch statement.

FC+E

15.1.1 The assignment-expression of a throw statement shall not itself
cause an exception to be thrown.

NC

15.1.2 NULL shall not be thrown explicitly. FC+E

15.1.3 An empty throw (throw;) shall only be used in the compound-
statement of a catch handler.

FC+E

15.3.1 Exceptions shall be raised only after start-up and before termina-
tion of the program.

NC

15.3.2 There should be at least one exception handler to catch all other-
wise unhandled exceptions.

FC+E

15.3.3 Handlers of a function-try-block implementation of a class con-
structor or destructor shall not reference non-static members
from this class or its bases.

FC+E

15.3.4 Each exception explicitly thrown in the code shall have a handler
of a compatible type in all call paths that could lead to that point.

NC

15.3.5 A class type exception shall always be caught by reference. FC+E

15.3.6 Where multiple handlers are provided in a single try-catch state-
ment or function-try-block for a derived class and some or all
of its bases, the handlers shall be ordered most-derived to base
class.

FC+E

continues on the next page. . .

18 QA Systems GmbH

Chapter 2: MISRA C++:2008

Exception handling Support

. . . continued

15.3.7 Where multiple handlers are provided in a single try-catch state-
ment or function-try-block, any ellipsis (catch-all) handler shall
occur last.

FC+E

15.4.1 If a function is declared with an exception-specification, then all
declarations of the same function (in other translation units) shall
be declared with the same set of type-ids.

PC

15.5.1 A class destructor shall not exit with an exception. NC

15.5.2 Where a function’s declaration includes an exception-
specification, the function shall only be capable of throwing
exceptions of the indicated type(s).

NC

15.5.3 The terminate() function shall not be called implicitly. PC

Preprocessing directives Support

16.0.1 #include directives in a file shall only be preceded by other pre-
processor directives or comments.

FC+E

16.0.2 Macros shall only be #define’d or #undef’d in the global names-
pace.

FC+E

16.0.3 #undef shall not be used. FC+E

16.0.4 Function-like macros shall not be defined. FC+E

16.0.5 Arguments to a function-like macro shall not contain tokens that
look like preprocessing directives.

FC+E

16.0.6 In the definition of a function-like macro, each instance of a pa-
rameter shall be enclosed in parentheses, unless it is used as the
operand of # or ##.

FC+E

16.0.7 Undefined macro identifiers shall not be used in #if or #elif pre-
processor directives, except as operands to the defined operator.

FC+E

Note that invalid directives reached by the preprocessor are reported
as an error.

16.0.8 If the # token appears as the first token on a line, then it shall be
immediately followed by a preprocessing token.

FC+E

16.1.1 The defined preprocessor operator shall only be used in one of
the two standard forms.

FC

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 19

Chapter 2: MISRA C++:2008

Preprocessing directives Support

. . . continued

16.1.2 All #else, #elif and #endif preprocessor directives shall reside
in the same file as the #if or #ifdef directive to which they are
related.

FC+E

16.2.1 The pre-processor shall only be used for file inclusion and include
guards.

PC

16.2.2 C++ macros shall only be used for: include guards, type qualifiers,
or storage class specifiers.

PC

16.2.3 Include guards shall be provided. FC+E

16.2.4 The ’, ", /* or // characters shall not occur in a header file name. FC+E

16.2.5 The \ character should not occur in a header file name. FC+E

16.2.6 The #include directive shall be followed by either a <filename>
or "filename" sequence.

FC+E

16.3.1 There shall be at most one occurrence of the # or ## operators in
a single macro definition.

FC+E

16.3.2 The # and ## operators should not be used. FC+E

16.6.1 All uses of the #pragma directive shall be documented. FC+E

Library introduction Support

17.0.1 Reserved identifiers, macros and functions in the standard library
shall not be defined, redefined or undefined.

PC

17.0.2 The names of standard library macros and objects shall not be
reused.

PC

17.0.3 The names of standard library functions shall not be overridden. NC

17.0.4 All library code shall conform to MISRA C++. S

Library code can be checked for MISRA C++:2008 compliance by either
adding it to the checked project or analyzing it separately.

17.0.5 The setjmp macro and the longjmp function shall not be used. FC+E

Language support library Support

18.0.1 The C library shall not be used. FC+E

continues on the next page. . .

20 QA Systems GmbH

Chapter 2: MISRA C++:2008

Language support library Support

. . . continued

18.0.2 The library functions atof, atoi and atol from library <cstdlib>
shall not be used.

FC+E

18.0.3 The library functions abort, exit, getenv and system from library
<cstdlib> shall not be used.

FC+E

18.0.4 The time handling functions of library <ctime> shall not be used. FC+E

18.0.5 The unbounded functions of library <cstring> shall not be used. FC+E

18.2.1 The macro offsetof shall not be used. FC+E

18.4.1 Dynamic heap memory allocation shall not be used. PC

18.7.1 The signal handling facilities of <csignal> shall not be used. FC+E

Diagnostics library Support

19.3.1 The error indicator errno shall not be used. FC+E

Input/output library Support

27.0.1 The stream input/output library <cstdio> shall not be used. FC+E

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 21

3 AUTOSAR C++14

Coding guideline checks can be executed with or without runtime error analysis. Coupling QA-MISRA
with Astrée’s runtime error analysis can raise the degree to which a coding guideline is supported.

The following table shows the degree of rule support for each rule assuming no coupling. Detailed
information on the degree of support when coupled with Astrée can be found in the dedicated a3 for
C/C++ Compliance documentation.

The AUTOSAR C++14 rule set is based on [4].

In total, 292 rules of the rule set – i. e. 73% of all 397 rules – are checked:

All Rules Required Advisory
fully checked 210 (52 %) 193 (53 %) 17 (48 %)
partially checked 78 (19 %) 70 (19 %) 8 (22 %)
implicitly checkable 4 (1 %) 3 (0 %) 1 (2 %)
not checked 105 (26 %) 96 (26 %) 9 (25 %)

Language independent issues Support

0.1.1A A project shall not contain instances of non-volatile variables
being given values that are not subsequently used.

PC

0.1.1M A project shall not contain unreachable code. PC

Violations of this rule are reported for code that cannot be reached by
the analyzer. Such code is definitely unreachable except if the analysis
terminated prematurely because of an error. It cannot be guaranteed
that all unreachable code is reported.

0.1.2A The value returned by a function having a non-void return type
that is not an overloaded operator shall be used.

FC+E

0.1.2M A project shall not contain infeasible paths. PC

0.1.3A Every function defined in an anonymous namespace, or static
function with internal linkage, or private member function shall
be used.

PC

0.1.3M A project shall not contain unused variables. PC

0.1.4A There shall be no unused named parameters in non-virtual func-
tions.

FC+E

continues on the next page. . .

22 QA Systems GmbH

Chapter 3: AUTOSAR C++14

Language independent issues Support

. . . continued

0.1.4M A project shall not contain non-volatile POD variables having only
one use.

FC+E

0.1.5A There shall be no unused named parameters in the set of param-
eters for a virtual function and all the functions that override
it.

FC+E

0.1.6A There should be no unused type declarations. PC

0.1.8M All functions with void return type shall have external side ef-
fect(s).

NC

0.1.9M There shall be no dead code. PC

0.1.10M Every defined function shall be called at least once. PC

0.2.1M An object shall not be assigned to an overlapping object. PC

0.3.1M Minimization of run-time failures shall be ensured by the use of
at least one of: (a) static analysis tools/techniques; (b) dynamic
analysis tools/techniques; (c) explicit coding of checks to handle
run-time faults.

NC

0.3.2M If a function generates error information, then that error infor-
mation shall be tested.

PC

0.4.1A Floating-point implementation shall comply with IEEE 754 stan-
dard.

NC

0.4.1M Use of scaled-integer or fixed-point arithmetic shall be docu-
mented.

NC

0.4.2A Type long double shall not be used. FC+E

0.4.2M Use of floating-point arithmetic shall be documented. NC

0.4.3A The implementations in the chosen compiler shall strictly comply
with the C++14 Language Standard.

NC

This rule applies to the used compiler and cannot be checked at the
source code level.

0.4.4A Range, domain and pole errors shall be checked when using math
functions.

PC

This rule check is supported by Astrée’s semantic analysis: Astrée pro-
vides analysis stubs for library functions that raise alarms for arguments
that may cause runtime errors. Without Astrée, the tool checks this rule
with reduced coverage and precision.

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 23

Chapter 3: AUTOSAR C++14

General Support

1.0.2M Multiple compilers shall only be used if they have a common,
defined interface.

NC

This rule applies to the used compiler and cannot be checked at the
source code level.

1.1.1A All code shall conform to ISO/IEC 14882:2014 - Programming Lan-
guage C++ and shall not use deprecated features.

PC + S

The frontend rejects in large part violations of ISO/IEC 14882 and warns
about the use of deprecated features.

1.1.2A A warning level of the compilation process shall be set in compli-
ance with project policies.

NC

This rule applies to the used compiler and cannot be checked at the
source code level.

1.1.3A An optimization option that disregards strict standard compliance
shall not be turned on in the chosen compiler.

NC

This rule applies to the used compiler and cannot be checked at the
source code level.

1.2.1A When using a compiler toolchain (including preprocessor, com-
piler itself, linker, C++ standard libraries) in safety-related soft-
ware, the tool confidence level(TCL) shall be determined.In case
of TCL2 or TCL3, the compiler shall undergo a "Qualification of a
software tool", as per ISO 26262 - 8.11.4.6 [6].

NC

This rule applies to the used compiler and cannot be checked at the
source code level.

1.4.1A Code metrics and their valid boundaries shall be defined and
code shall comply with defined boundaries of code metrics.

S

The tool supports the computation of various code metrics and provides
configurable threshold checks.

1.4.3A All code should compile free of compiler warnings. S

The frontend in large part issues the same or similar warnings.

Lexical conventions Support

2.3.1A Only those characters specified in the C++ Language Standard
basic source character set shall be used in the source code.

FC+E

2.5.1A Trigraphs shall not be used. FC+E

continues on the next page. . .

24 QA Systems GmbH

Chapter 3: AUTOSAR C++14

Lexical conventions Support

. . . continued

2.5.2A Digraphs shall not be used. FC+E

2.7.1A The character \ shall not occur as a last character of a C++ com-
ment.

FC+E

2.7.1M The character sequence /* shall not be used within a C-style com-
ment.

FC+E

2.7.2A Sections of code shall not be "commented out". NC

2.7.3A All declarations of "user-defined" types, static and non-static data
members, functions and methods shall be preceded by documen-
tation.

NC

2.7.5A Comments shall not document any actions or sources (e.g. tables,
figures, paragraphs, etc.) that are outside of the file.

NC

2.8.1A A header file name should reflect the logical entity for which it
provides declarations.

NC

2.8.2A An implementation file name should reflect the logical entity for
which it provides definitions.

NC

2.10.1A An identifier declared in an inner scope shall not hide an identi-
fier declared in an outer scope.

PC

2.10.1M Different identifiers shall be typographically unambiguous. FC+E

2.10.4A The identifier name of a non-member object with static storage
duration or static function shall not be reused within a names-
pace.

NC

2.10.5A An identifier name of a function with static storage duration or a
non-member object with external or internal linkage should not
be reused.

NC

2.10.6A A class or enumeration name shall not be hidden by a variable,
function or enumerator declaration in the same scope.

NC

2.11.1A Volatile keyword shall not be used. FC+E

2.13.1A Only those escape sequences that are defined in ISO/IEC
14882:2014 shall be used.

FC+E

2.13.2A String literals with different encoding prefixes shall not be con-
catenated.

FC+E

2.13.2M Octal constants (other than zero) and octal escape sequences
(other than "\0") shall not be used.

FC+E

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 25

Chapter 3: AUTOSAR C++14

Lexical conventions Support

. . . continued

2.13.3A Type wchar_t shall not be used. FC+E

2.13.3M A "U" suffix shall be applied to all octal or hexadecimal integer
literals of unsigned type.

PC

2.13.4A String literals shall not be assigned to non-constant pointers. FC+E

2.13.4M Literal suffixes shall be upper case. FC+E

2.13.5A Hexadecimal constants should be upper case. FC+E

2.13.6A Universal character names shall be used only inside character or
string literals.

FC+E

Basic concepts Support

3.1.1A It shall be possible to include any header file in multiple transla-
tion units without violating the One Definition Rule.

NC

3.1.2A Header files, that are defined locally in the project, shall have a
file name extension of one of: ".h", ".hpp" or ".hxx".

FC+E

3.1.2M Functions shall not be declared at block scope. FC+E

3.1.3A Implementation files, that are defined locally in the project,
should have a file name extension of ".cpp".

FC+E

3.1.4A When an array with external linkage is declared, its size shall be
stated explicitly.

PC

3.1.5A A function definition shall only be placed in a class definition if (1)
the function is intended to be inlined (2) it is a member function
template (3) it is a member function of a class template.

NC

From the source code it is not derivable whether a function is "intended
to be inlined".

3.1.6A Trivial accessor and mutator functions should be inlined. PC

3.2.1M All declarations of an object or function shall have compatible
types.

PC

3.2.2M The One Definition Rule shall not be violated. PC

3.2.3M A type, object or function that is used in multiple translation units
shall be declared in one and only one file.

FC+E

3.2.4M An identifier with external linkage shall have exactly one defini-
tion.

PC

continues on the next page. . .

26 QA Systems GmbH

Chapter 3: AUTOSAR C++14

Basic concepts Support

. . . continued

3.3.1A Objects or functions with external linkage (including members
of named namespaces) shall be declared in a header file.

FC+E

3.3.2A Static and thread-local objects shall be constant-initialized. FC+E

3.3.2M If a function has internal linkage then all re-declarations shall
include the static storage class specifier.

FC+E

3.4.1M An identifier declared to be an object or type shall be defined in
a block that minimizes its visibility.

NC

3.8.1A An object shall not be accessed outside of its lifetime. PC

3.9.1A Fixed width integer types from <cstdint>, indicating the size and
signedness, shall be used in place of the basic numerical types.

PC

Only use of typedefs is checked, not whether their names indicate size
and signedness. This rule check is supported by Astrée’s semantic anal-
ysis: Astrée reports overflows resulting from incorrect assumptions
about the size/signedness of numerical types.

3.9.1M The types used for an object, a function return type, or a function
parameter shall be token-for-token identical in all declarations
and re-declarations.

PC

3.9.3M The underlying bit representations of floating-point values shall
not be used.

PC

Standard conversions Support

4.5.1A Expressions with type enum or enum class shall not be used as
operands to built-in and overloaded operators other than the
subscript operator [], the assignment operator =, the equality
operators == and ! =, the unary & operator, and the relational
operators <, <=, >, >=.

FC+E

4.5.1M Expressions with type bool shall not be used as operands to built-
in operators other than the assignment operator =, the logical
operators &&, ||, !, the equality operators == and !=, the unary &
operator, and the conditional operator.

FC+E

4.5.3M Expressions with type (plain) char and wchar_t shall not be used
as operands to built-in operators other than the assignment oper-
ator =, the equality operators == and !=, and the unary & operator.

FC+E

4.7.1A An integer expression shall not lead to data loss. NC

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 27

Chapter 3: AUTOSAR C++14

Standard conversions Support

. . . continued

This rule check is supported by Astrée’s semantic analysis: Astrée raises
alarms for conversion overflows and arithmetic overflows.

4.10.1A Only nullptr literal shall be used as the null-pointer-constant. FC+E

4.10.1M NULL shall not be used as an integer value. FC+E

4.10.2M Literal zero (0) shall not be used as the null-pointer-constant. FC+E

Expressions Support

5.0.1A The value of an expression shall be the same under any order of
evaluation that the standard permits.

PC

5.0.2A The condition of an if-statement and the condition of an iteration
statement shall have type bool.

FC+E

5.0.2M Limited dependence should be placed on C++ operator prece-
dence rules in expressions.

PC

5.0.3A The declaration of objects shall contain no more than two levels
of pointer indirection.

FC+E

5.0.3M A cvalue expression shall not be implicitly converted to a different
underlying type.

FC+E

5.0.4A Pointer arithmetic shall not be used with pointers to non-final
classes.

FC+E

5.0.4M An implicit integral conversion shall not change the signedness
of the underlying type.

FC+E

5.0.5M There shall be no implicit floating-integral conversions. FC+E

5.0.6M An implicit integral or floating-point conversion shall not reduce
the size of the underlying type.

FC+E

5.0.7M There shall be no explicit floating-integral conversions of a cvalue
expression.

FC+E

5.0.8M An explicit integral or floating-point conversion shall not increase
the size of the underlying type of a cvalue expression.

FC+E

5.0.9M An explicit integral conversion shall not change the signedness
of the underlying type of a cvalue expression.

FC+E

continues on the next page. . .

28 QA Systems GmbH

Chapter 3: AUTOSAR C++14

Expressions Support

. . . continued

5.0.10M If the bitwise operators ~ and << are applied to an operand with
an underlying type of unsigned char or unsigned short, the result
shall be immediately cast to the underlying type of the operand.

FC+E

5.0.11M The plain char type shall only be used for the storage and use of
character values.

FC+E

5.0.12M signed char and unsigned char type shall only be used for the
storage and use of numeric values.

FC+E

5.0.14M The first operand of a conditional-operator shall have type bool. FC+E

5.0.15M Array indexing shall be the only form of pointer arithmetic. PC

5.0.16M A pointer operand and any pointer resulting from pointer arith-
metic using that operand shall both address elements of the same
array.

NC

5.0.17M Subtraction between pointers shall only be applied to pointers
that address elements of the same array.

NC

5.0.18M >, >=, <, <= shall not be applied to objects of pointer type, except
where they point to the same array.

NC

5.0.20M Non-constant operands to a binary bitwise operator shall have
the same underlying type.

FC+E

5.0.21M Bitwise operators shall only be applied to operands of unsigned
underlying type.

FC+E

5.1.1A Literal values shall not be used apart from type initialization,
otherwise symbolic names shall be used instead.

FC

5.1.2A Variables shall not be implicitly captured in a lambda expression. FC+E

5.1.3A Parameter list (possibly empty) shall be included in every lambda
expression.

FC+E

5.1.4A A lambda expression object shall not outlive any of its reference-
captured objects.

NC

5.1.6A Return type of a non-void return type lambda expression should
be explicitly specified.

FC+E

5.1.7A A lambda shall not be an operand to decltype or typeid. FC+E

5.1.8A Lambda expressions should not be defined inside another lambda
expression.

FC+E

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 29

Chapter 3: AUTOSAR C++14

Expressions Support

. . . continued

5.1.9A Identical unnamed lambda expressions shall be replaced with a
named function or a named lambda expression.

PC

5.2.1A dynamic_cast should not be used. FC+E

5.2.2A Traditional C-style casts shall not be used. FC+E

5.2.2M A pointer to a virtual base class shall only be cast to a pointer to
a derived class by means of dynamic_cast.

FC+E

5.2.3A A cast shall not remove any const or volatile qualification from
the type of a pointer or reference.

FC+E

5.2.3M Casts from a base class to a derived class should not be performed
on polymorphic types.

FC+E

5.2.4A reinterpret_cast shall not be used. FC+E

5.2.5A An array or container shall not be accessed beyond its range. NC

5.2.6A The operands of a logical && or || shall be parenthesized if the
operands contain binary operators.

FC+E

5.2.6M A cast shall not convert a pointer to a function to any other pointer
type, including a pointer to function type.

FC+E

5.2.8M An object with integer type or pointer to void type shall not be
converted to an object with pointer type.

FC+E

5.2.9M A cast should not convert a pointer type to an integral type. FC+E

5.2.10M The increment (++) and decrement (--) operators should not be
mixed with other operators in an expression.

FC+E

5.2.11M The comma operator, && operator and the || operator shall not
be overloaded.

FC+E

5.2.12M An identifier with array type passed as a function argument shall
not decay to a pointer.

FC+E

5.3.1A Evaluation of the operand to the typeid operator shall not contain
side effects.

FC+E

5.3.1M Each operand of the ! operator, the logical && or the logical ||
operators shall have type bool.

FC+E

5.3.2A Null pointers shall not be dereferenced. PC

5.3.2M The unary minus operator shall not be applied to an expression
whose underlying type is unsigned.

FC+E

continues on the next page. . .

30 QA Systems GmbH

Chapter 3: AUTOSAR C++14

Expressions Support

. . . continued

5.3.3A Pointers to incomplete class types shall not be deleted. FC+E

5.3.3M The unary & operator shall not be overloaded. FC+E

5.3.4M Evaluation of the operand to the sizeof operator shall not contain
side effects.

FC

5.5.1A A pointer to member shall not access non-existent class members. NC

5.6.1A The right hand operand of the integer division or remainder
operators shall not be equal to zero.

PC

5.8.1M The right hand operand of a shift operator shall lie between zero
and one less than the width in bits of the underlying type of the
left hand operand.

PC

5.10.1A A pointer to member virtual function shall only be tested for
equality with null-pointer-constant.

PC

5.14.1M The right hand operand of a logical && or || operator shall not
contain side effects.

FC

5.16.1A The ternary conditional operator shall not be used as a sub-
expression.

FC+E

5.17.1M The semantic equivalence between a binary operator and its
assignment operator form shall be preserved.

NC

5.18.1M The comma operator shall not be used. FC+E

5.19.1M Evaluation of constant unsigned integer expressions should not
lead to wrap-around.

NC

Statements Support

6.2.1A Move and copy assignment operators shall either move or respec-
tively copy base classes and data members of a class, without any
side effects.

NC

6.2.1M Assignment operators shall not be used in sub-expressions. FC+E

6.2.2A Expression statements shall not be explicit calls to constructors
of temporary objects only.

FC+E

6.2.2M Floating-point expressions shall not be directly or indirectly tested
for equality or inequality.

PC

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 31

Chapter 3: AUTOSAR C++14

Statements Support

. . . continued

6.2.3M Before preprocessing, a null statement shall only occur on a line
by itself; it may be followed by a comment, provided that the first
character following the null statement is a white-space character.

FC+E

6.3.1M The statement forming the body of a switch, while, do ... while or
for statement shall be a compound statement.

FC+E

6.4.1A A switch statement shall have at least two case-clauses, distinct
from the default label.

FC+E

The number of required cases is configurable. The default is 2.

6.4.1M An if (condition) construct shall be followed by a compound state-
ment. The else keyword shall be followed by either a compound
statement, or another if statement.

FC+E

6.4.2M All if ... else if constructs shall be terminated with an else clause. FC+E

6.4.3M A switch statement shall be a well-formed switch statement. FC+E

6.4.4M A switch-label shall only be used when the most closely-enclosing
compound statement is the body of a switch statement.

FC+E

6.4.5M An unconditional throw or break statement shall terminate every
non-empty switch-clause.

FC+E

6.4.6M The final clause of a switch statement shall be the default-clause. FC+E

6.4.7M The condition of a switch statement shall not have bool type. FC+E

6.5.1A A for-loop that loops through all elements of the container and
does not use its loop-counter shall not be used.

NC

6.5.2A A for loop shall contain a single loop-counter which shall not have
floating-point type.

PC

6.5.2M If loop-counter is not modified by -- or ++, then, within condition,
the loop-counter shall only be used as an operand to <=, <, > or
>=.

PC

6.5.3A Do statements should not be used. FC+E

6.5.3M The loop-counter shall not be modified within condition or state-
ment.

PC

6.5.4A For-init-statement and expression should not perform actions
other than loop-counter initialization and modification.

NC

6.5.4M The loop-counter shall be modified by one of: --, ++, -=n, or +=n;
where n remains constant for the duration of the loop.

PC

continues on the next page. . .

32 QA Systems GmbH

Chapter 3: AUTOSAR C++14

Statements Support

. . . continued

6.5.5M A loop-control-variable other than the loop-counter shall not be
modified within condition or expression.

PC

6.5.6M A loop-control-variable other than the loop-counter which is mod-
ified in statement shall have type bool.

PC

6.6.1A The goto statement shall not be used. FC+E

6.6.1M Any label referenced by a goto statement shall be declared in the
same block, or in a block enclosing the goto statement.

FC+E

6.6.2M The goto statement shall jump to a label declared later in the
same function body.

FC+E

6.6.3M The continue statement shall only be used within a well-formed
for loop.

PC

Declaration Support

7.1.1A Constexpr or const specifiers shall be used for immutable data
declaration.

NC

7.1.2A The constexpr specifier shall be used for values that can be deter-
mined at compile time.

NC

7.1.2M A pointer or reference parameter in a function shall be declared
as pointer to const or reference to const if the corresponding
object is not modified.

NC

7.1.3A CV-qualifiers shall be placed on the right hand side of the type
that is a typedef or a using name.

NC

7.1.4A The register keyword shall not be used. FC+E

7.1.5A The auto specifier shall not be used apart from following cases:
(1) to declare that a variable has the same type as return type of
a function call, (2) to declare that a variable has the same type as
initializer of non-fundamental type, (3) to declare parameters of
a generic lambda expression, (4) to declare a function template
using trailing return type syntax.

FC

7.1.6A The typedef specifier shall not be used. FC+E

7.1.7A Each expression statement and identifier declaration shall be
placed on a separate line.

PC

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 33

Chapter 3: AUTOSAR C++14

Declaration Support

. . . continued

7.1.8A A non-type specifier shall be placed before a type specifier in a
declaration.

NC

7.1.9A A class, structure, or enumeration shall not be declared in the
definition of its type.

FC+E

7.2.1A An expression with enum underlying type shall only have values
corresponding to the enumerators of the enumeration.

PC

7.2.2A Enumeration underlying base type shall be explicitly defined. FC+E

7.2.3A Enumerations shall be declared as scoped enum classes. FC+E

7.2.4A In an enumeration, either (1) none, (2) the first or (3) all enumer-
ators shall be initialized.

FC+E

7.2.5A Enumerations should be used to represent sets of related named
constants.

NC

7.3.1A All overloads of a function shall be visible from where it is called. NC

7.3.1M The global namespace shall only contain main, namespace decla-
rations and extern "C" declarations.

FC+E

7.3.2M The identifier main shall not be used for a function other than
the global function main.

FC+E

7.3.3M There shall be no unnamed namespaces in header files. FC+E

7.3.4M using-directives shall not be used. FC+E

7.3.6M using-directives and using-declarations (excluding class scope or
function scope using-declarations) shall not be used in header
files.

FC+E

7.4.1A The asm declaration shall not be used. FC+E

7.4.1M All usage of assembler shall be documented. PC

7.4.2M Assembler instructions shall only be introduced using the asm
declaration.

PC

7.4.3M Assembly language shall be encapsulated and isolated. FC+E

7.5.1A A function shall not return a reference or a pointer to a parameter
that is passed by reference to const.

PC

7.5.1M A function shall not return a reference or a pointer to an auto-
matic variable (including parameters), defined within the func-
tion.

PC

continues on the next page. . .

34 QA Systems GmbH

Chapter 3: AUTOSAR C++14

Declaration Support

. . . continued

7.5.2A Functions shall not call themselves, either directly or indirectly. PC

7.5.2M The address of an object with automatic storage shall not be
assigned to another object that may persist after the first object
has ceased to exist.

NC

7.6.1A Functions declared with the [[noreturn]] attribute shall not re-
turn.

FC

Declarators Support

8.0.1M An init-declarator-list or a member-declarator-list shall consist of
a single init-declarator or member-declarator respectively.

FC+E

8.2.1A When declaring function templates, the trailing return type syn-
tax shall be used if the return type depends on the type of param-
eters.

FC

8.3.1M Parameters in an overriding virtual function shall either use the
same default arguments as the function they override, or else
shall not specify any default arguments.

PC

It is impossible to decide in the general case whether two expressions
initializing the same default argument have the same value.

8.4.1A Functions shall not be defined using the ellipsis notation. FC+E

8.4.2A All exit paths from a function with non-void return type shall
have an explicit return statement with an expression.

FC+E

8.4.2M The identifiers used for the parameters in a re-declaration of a
function shall be identical to those in the declaration.

FC+E

8.4.3A Common ways of passing parameters should be used. NC

8.4.4A Multiple output values from a function should be returned as a
struct or tuple.

PC

8.4.4M A function identifier shall either be used to call the function or it
shall be preceded by &.

FC+E

8.4.5A "consume" parameters declared as X && shall always be moved
from.

FC+E

8.4.6A "forward" parameters declared as T && shall always be for-
warded.

FC+E

8.4.7A "in" parameters for "cheap to copy" types shall be passed by value. FC+E

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 35

Chapter 3: AUTOSAR C++14

Declarators Support

. . . continued

8.4.8A Output parameters shall not be used. PC

8.4.9A "in-out" parameters declared as T & shall be modified. NC

8.4.10A A parameter shall be passed by reference if it can’t be NULL NC

8.4.11A A smart pointer shall only be used as a parameter type if it ex-
presses lifetime semantics

NC

8.4.12A A std::unique_ptr shall be passed to a function as: (1) a copy to
express the function assumes ownership (2) an lvalue reference
to express that the function replaces the managed object.

NC

8.4.13A A std::shared_ptr shall be passed to a function as: (1) a copy to
express the function shares ownership (2) an lvalue reference to
express that the function replaces the managed object (3) a const
lvalue reference to express that the function retains a reference
count.

NC

8.4.14A Interfaces shall be precisely and strongly typed. NC

8.5.0A All memory shall be initialized before it is read. PC

8.5.1A In an initialization list, the order of initialization shall be follow-
ing: (1) virtual base classes in depth and left to right order of the
inheritance graph, (2) direct base classes in left to right order of
inheritance list, (3) non-static data members in the order they
were declared in the class definition.

FC+E

8.5.2A Braced-initialization {}, without equals sign, shall be used for
variable initialization.

PC

8.5.2M Braces shall be used to indicate and match the structure in the
non-zero initialization of arrays and structures.

FC+E

8.5.3A A variable of type auto shall not be initialized using {} or ={}
braced-initialization.

FC+E

8.5.4A If a class has a user-declared constructor that takes a parameter
of type std::initializer_list, then it shall be the only constructor
apart from special member function constructors.

FC+E

Classes Support

9.3.1A Member functions shall not return non-const "raw" pointers or
references to private or protected data owned by the class.

PC

continues on the next page. . .

36 QA Systems GmbH

Chapter 3: AUTOSAR C++14

Classes Support

. . . continued

9.3.1M const member functions shall not return non-const pointers or
references to class-data.

PC

9.3.3M If a member function can be made static then it shall be made
static, otherwise if it can be made const then it shall be made
const.

PC

Violations of this rule are not reported for templates as all possible
instantiations need to be known to decide whether a function can be
made const.

9.5.1A Unions shall not be used. FC+E

The exception for "tagged unions" is not taken into account. It is sug-
gested to encapsulate and annotate unions which shall be excluded
from this check.

9.6.1A Data types used for interfacing with hardware or conforming to
communication protocols shall be trivial, standard-layout and
only contain members of types with defined sizes.

FC

Data types used to interface to hardware or conforming to communica-
tion protocols have to be explicitly configured.

9.6.1M When the absolute positioning of bits representing a bit-field is
required, then the behaviour and packing of bit-fields shall be
documented.

NC

9.6.2A Bit-fields shall be used only when interfacing to hardware or
conforming to communication protocols.

FC

Structs/unions used to interface to hardware or conforming to commu-
nication protocols have to be explicitly configured.

9.6.4M Named bit-fields with signed integer type shall have a length of
more than one bit.

FC+E

Derived Classes Support

10.0.1A Public inheritance shall be used to implement "is-a" relationship. NC

10.0.2A Membership or non-public inheritance shall be used to imple-
ment "has-a" relationship.

NC

10.1.1A Class shall not be derived from more than one base class which
is not an interface class.

FC+E

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 37

Chapter 3: AUTOSAR C++14

Derived Classes Support

. . . continued

10.1.1M Classes should not be derived from virtual bases. FC+E

10.1.2M A base class shall only be declared virtual if it is used in a diamond
hierarchy.

FC+E

10.1.3M An accessible base class shall not be both virtual and non-virtual
in the same hierarchy.

FC+E

10.2.1A Non-virtual public or protected member functions shall not be
redefined in derived classes.

FC+E

10.2.1M All accessible entity names within a multiple inheritance hierar-
chy should be unique.

PC

10.3.1A Virtual function declaration shall contain exactly one of the three
specifiers: (1) virtual, (2) override, (3) final.

FC+E

10.3.2A Each overriding virtual function shall be declared with the over-
ride or final specifier.

FC+E

10.3.3A Virtual functions shall not be introduced in a final class. FC+E

10.3.3M A virtual function shall only be overridden by a pure virtual
function if it is itself declared as pure virtual.

FC+E

10.3.5A A user-defined assignment operator shall not be virtual. FC+E

10.4.1A Hierarchies should be based on interface classes. NC

Member access control Support

11.0.1A A non-POD type should be defined as class. FC+E

11.0.1M Member data in non-POD class types shall be private. FC+E

11.0.2A A type defined as struct shall: (1) provide only public data mem-
bers, (2) not provide any special member functions or methods,
(3) not be a base of another struct or class, (4) not inherit from
another struct or class.

FC+E

11.3.1A Friend declarations shall not be used. FC+E

38 QA Systems GmbH

Chapter 3: AUTOSAR C++14

Special member functions Support

12.0.1A If a class declares a copy or move operation, or a destructor, either
via "=default", "=delete", or via a user-provided declaration, then
all others of these five special member functions shall be declared
as well.

FC+E

12.0.2A Bitwise operations and operations that assume data representa-
tion in memory shall not be performed on objects.

NC

12.1.1A Constructors shall explicitly initialize all virtual base classes, all
direct non-virtual base classes and all non-static data members.

FC+E

12.1.1M An object’s dynamic type shall not be used from the body of its
constructor or destructor.

PC

12.1.2A Both NSDMI and a non-static member initializer in a constructor
shall not be used in the same type.

FC+E

12.1.3A If all user-defined constructors of a class initialize data members
with constant values that are the same across all constructors,
then data members shall be initialized using NSDMI instead.

FC+E

12.1.4A All constructors that are callable with a single argument of fun-
damental type shall be declared explicit.

FC+E

12.1.5A Common class initialization for non-constant members shall be
done by a delegating constructor.

NC

12.1.6A Derived classes that do not need further explicit initialization
and require all the constructors from the base class shall use
inheriting constructors.

NC

12.4.1A Destructor of a base class shall be public virtual, public override
or protected non-virtual.

FC+E

12.4.2A If a public destructor of a class is non-virtual, then the class should
be declared final.

FC+E

12.6.1A All class data members that are initialized by the constructor
shall be initialized using member initializers.

PC

12.7.1A If the behavior of a user-defined special member function is iden-
tical to implicitly defined special member function, then it shall
be defined "=default" or be left undefined.

PC

12.8.1A Move and copy constructors shall move and respectively copy
base classes and data members of a class, without any side effects.

NC

12.8.2A User-defined copy and move assignment operators should use
user-defined no-throw swap function.

FC

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 39

Chapter 3: AUTOSAR C++14

Special member functions Support

. . . continued

12.8.3A Moved-from object shall not be read-accessed. NC

12.8.4A Move constructor shall not initialize its class members and base
classes using copy semantics.

FC+E

12.8.5A A copy assignment and a move assignment operators shall handle
self-assignment.

NC

12.8.6A Copy and move constructors and copy assignment and move
assignment operators shall be declared protected or defined
"=delete" in base class.

FC+E

12.8.7A Assignment operators should be declared with the ref-qualifier
&.

FC+E

Overloading Support

13.1.2A User defined suffixes of the user defined literal operators shall
start with underscore followed by one or more letters.

FC+E

13.1.3A User defined literals operators shall only perform conversion of
passed parameters.

NC

13.2.1A An assignment operator shall return a reference to "this". FC+E

13.2.2A A binary arithmetic operator and a bitwise operator shall return
a "prvalue".

FC+E

13.2.3A A relational operator shall return a boolean value. FC+E

13.3.1A A function that contains "forwarding reference" as its argument
shall not be overloaded.

PC

13.5.1A If "operator[]" is to be overloaded with a non-const version, const
version shall also be implemented.

FC+E

13.5.2A All user-defined conversion operators shall be defined explicit. FC+E

13.5.3A User-defined conversion operators should not be used. FC+E

13.5.4A If two opposite operators are defined, one shall be defined in
terms of the other.

PC

13.5.5A Comparison operators shall be non-member functions with iden-
tical parameter types and noexcept.

PC

continues on the next page. . .

40 QA Systems GmbH

Chapter 3: AUTOSAR C++14

Overloading Support

. . . continued

13.6.1A Digit sequences separators ’ shall only be used as follows: (1) for
decimal, every 3 digits, (2) for hexadecimal, every 2 digits, (3) for
binary, every 4 digits.

FC+E

Templates Support

14.1.1A A template should check if a specific template argument is suitable
for this template.

NC

14.5.1A A template constructor shall not participate in overload resolu-
tion for a single argument of the enclosing class type.

NC

14.5.2A Class members that are not dependent on template class parame-
ters should be defined in a separate base class.

PC

14.5.3A A non-member generic operator shall only be declared in a names-
pace that does not contain class (struct) type, enum type or union
type declarations.

FC+E

14.5.3M A copy assignment operator shall be declared when there is a
template assignment operator with a parameter that is a generic
parameter.

FC+E

14.6.1M In a class template with a dependent base, any name that may
be found in that dependent base shall be referred to using a
qualified-id or this->

NC

14.7.1A A type used as a template argument shall provide all members
that are used by the template.

S

The frontend rejects the instantiation of a template with a type if that
type is missing required members and the templated code requiring
the members is used.

14.7.2A Template specialization shall be declared in the same file (1) as
the primary template (2) as a user-defined type, for which the
specialization is declared.

FC+E

14.8.2A Explicit specializations of function templates shall not be used. FC+E

Exception handling Support

15.0.1A A function shall not exit with an exception if it is able to complete
its task.

NC

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 41

Chapter 3: AUTOSAR C++14

Exception handling Support

. . . continued

15.0.2A At least the basic guarantee for exception safety shall be provided
for all operations. In addition, each function may offer either the
strong guarantee or the nothrow guarantee

NC

15.0.3A Exception safety guarantee of a called function shall be consid-
ered.

NC

15.0.3M Control shall not be transferred into a try or catch block using a
goto or a switch statement.

FC+E

15.0.4A Unchecked exceptions shall be used to represent errors from
which the caller cannot reasonably be expected to recover.

NC

15.0.5A Checked exceptions shall be used to represent errors from which
the caller can reasonably be expected to recover.

NC

15.0.6A An analysis shall be performed to analyze the failure modes of
exception handling. In particular, the following failure modes
shall be analyzed: (a) worst time execution time not existing or
cannot be determined, (b) stack not correctly unwound, (c) excep-
tion not thrown, other exception thrown, wrong catch activated,
(d) memory not available while exception handling.

NC

15.0.7A Exception handling mechanism shall guarantee a deterministic
worst-case time execution time.

NC

15.0.8A A worst-case execution time (WCET) analysis shall be performed
to determine maximum execution time constraints of the soft-
ware, covering in particular the exceptions processing.

NC

15.1.1A Only instances of types derived from std::exception should be
thrown.

FC+E

15.1.1M The assignment-expression of a throw statement shall not itself
cause an exception to be thrown.

NC

15.1.2A An exception object shall not be a pointer. FC+E

15.1.2M NULL shall not be thrown explicitly. FC+E

15.1.3A All thrown exceptions should be unique. NC

15.1.3M An empty throw (throw;) shall only be used in the compound-
statement of a catch handler.

FC+E

15.1.4A If a function exits with an exception, then before a throw, the func-
tion shall place all objects/resources that the function constructed
in valid states or it shall delete them.

NC

continues on the next page. . .

42 QA Systems GmbH

Chapter 3: AUTOSAR C++14

Exception handling Support

. . . continued

15.1.5A Exceptions shall not be thrown across execution boundaries. NC

15.2.1A Constructors that are not noexcept shall not be invoked before
program startup.

FC+E

15.2.2A If a constructor is not noexcept and the constructor cannot finish
object initialization, then it shall deallocate the object’s resources
and it shall throw an exception.

NC

15.3.1M Exceptions shall be raised only after start-up and before termina-
tion of the program.

NC

15.3.2A If a function throws an exception, it shall be handled when mean-
ingful actions can be taken, otherwise it shall be propagated.

NC

15.3.3A Main function and a task main function shall catch at least: base
class exceptions from all third-party libraries used, std::exception
and all otherwise unhandled exceptions.

PC

The separation of the handling of the various exception classes listed
by this rule is not checked.

15.3.3M Handlers of a function-try-block implementation of a class con-
structor or destructor shall not reference non-static members
from this class or its bases.

FC+E

15.3.4A Catch-all (ellipsis and std::exception) handlers shall be used only
in (a) main, (b) task main functions, (c) in functions that are
supposed to isolate independent components and (d) when calling
third-party code that uses exceptions not according to AUTOSAR
C++14 guidelines.

NC

15.3.4M Each exception explicitly thrown in the code shall have a handler
of a compatible type in all call paths that could lead to that point.

NC

15.3.5A A class type exception shall be caught by reference or const refer-
ence.

FC+E

15.3.6M Where multiple handlers are provided in a single try-catch state-
ment or function-try-block for a derived class and some or all
of its bases, the handlers shall be ordered most-derived to base
class.

FC+E

15.3.7M Where multiple handlers are provided in a single try-catch state-
ment or function-try-block, any ellipsis (catch-all) handler shall
occur last.

FC+E

15.4.1A Dynamic exception-specification shall not be used. FC+E

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 43

Chapter 3: AUTOSAR C++14

Exception handling Support

. . . continued

15.4.2A If a function is declared to be noexcept, noexcept(true) or noex-
cept(<true condition >), then it shall not exit with an exception.

PC

15.4.3A The noexcept specification of a function shall either be identi-
cal across all translation units, or identical or more restrictive
between a virtual member function and an overrider.

PC

15.4.4A A declaration of non-throwing function shall contain noexcept
specification.

NC

15.4.5A Checked exceptions that could be thrown from a function shall
be specified together with the function declaration and they shall
be identical in all function declarations and for all its overriders.

NC

15.5.1A All user-provided class destructors, deallocation functions, move
constructors, move assignment operators and swap functions
shall not exit with an exception. A noexcept exception specifica-
tion shall be added to these functions as appropriate.

PC

15.5.2A Program shall not be abruptly terminated. In particular, an
implicit or explicit invocation of std::abort(), std::quick_exit(),
std::_Exit(), std::terminate() shall not be done.

PC

15.5.3A The std::terminate() function shall not be called implicitly. PC

Preprocessing directives Support

16.0.1A The pre-processor shall only be used for unconditional and condi-
tional file inclusion and include guards, and using the following
directives: (1) #ifndef, (2) #ifdef, (3) #if, (4) #if defined, (5) #elif,
(6) #else, (7) #define, (8) #endif, (9) #include.

PC

16.0.1M #include directives in a file shall only be preceded by other pre-
processor directives or comments.

FC+E

16.0.2M Macros shall only be #define’d or #undef’d in the global names-
pace.

FC+E

16.0.5M Arguments to a function-like macro shall not contain tokens that
look like preprocessing directives.

FC+E

16.0.6M In the definition of a function-like macro, each instance of a pa-
rameter shall be enclosed in parentheses, unless it is used as the
operand of # or ##.

FC+E

continues on the next page. . .

44 QA Systems GmbH

Chapter 3: AUTOSAR C++14

Preprocessing directives Support

. . . continued

16.0.7M Undefined macro identifiers shall not be used in #if or #elif pre-
processor directives, except as operands to the defined operator.

FC+E

16.0.8M If the # token appears as the first token on a line, then it shall be
immediately followed by a preprocessing token.

FC+E

16.1.1M The defined preprocessor operator shall only be used in one of
the two standard forms.

FC

16.1.2M All #else, #elif and #endif preprocessor directives shall reside
in the same file as the #if or #ifdef directive to which they are
related.

FC+E

16.2.1A The ’, ", /*, //, \ characters shall not occur in a header file name or
in #include directive.

FC+E

16.2.2A There shall be no unused include directives. NC

16.2.3A An include directive shall be added explicitly for every symbol
used in a file.

NC

16.2.3M Include guards shall be provided. FC+E

16.3.1M There shall be at most one occurrence of the # or ## operators in
a single macro definition.

FC+E

16.3.2M The # and ## operators should not be used. FC+E

16.6.1A #error directive shall not be used. FC+E

16.7.1A The #pragma directive shall not be used. FC+E

Library introduction - partial Support

17.0.1A Reserved identifiers, macros and functions in the C++ standard
library shall not be defined, redefined or undefined.

PC

17.0.2A All project’s code including used libraries (including standard
and user-defined libraries) and any third-party user code shall
conform to the AUTOSAR C++ 14 Coding Guidelines

S

Library and any third-party user code can be checked for compliance
by either adding it to the checked project or analyzing it separately.

17.0.2M The names of standard library macros and objects shall not be
reused.

PC

17.0.3M The names of standard library functions shall not be overridden. NC

continues on the next page. . .

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 45

Chapter 3: AUTOSAR C++14

Library introduction - partial Support

. . . continued

17.0.5M The setjmp macro and the longjmp function shall not be used. FC+E

17.1.1A Use of the C Standard Library shall be encapsulated and isolated. NC

17.6.1A Non-standard entities shall not be added to standard namespaces. PC

Language support library - partial Support

18.0.1A The C library facilities shall only be accessed through C++ library
headers.

FC+E

18.0.2A The error state of a conversion from string to a numeric value
shall be checked.

PC

18.0.3A The library <clocale> (locale.h) and the setlocale function shall
not be used.

PC

18.0.3M The library functions abort, exit, getenv and system from library
<cstdlib> shall not be used.

FC+E

18.0.4M The time handling functions of library <ctime> shall not be used. FC+E

18.0.5M The unbounded functions of library <cstring> shall not be used. FC+E

18.1.1A C-style arrays shall not be used. FC+E

18.1.2A The std::vector<bool> specialization shall not be used. FC+E

18.1.3A The std::auto_ptr type shall not be used. FC+E

18.1.4A A pointer pointing to an element of an array of objects shall not
be passed to a smart pointer of single object type.

NC

18.1.6A All std::hash specializations for user-defined types shall have a
noexcept function call operator.

FC+E

18.2.1M The macro offsetof shall not be used. FC+E

18.5.1A Functions malloc, calloc, realloc and free shall not be used. FC+E

18.5.2A Non-placement new or delete expressions shall not be used. FC+E

18.5.3A The form of the delete expression shall match the form of the
new expression used to allocate the memory.

NC

18.5.4A If a project has sized or unsized version of operator "delete" glob-
ally defined, then both sized and unsized versions shall be de-
fined.

FC

continues on the next page. . .

46 QA Systems GmbH

Chapter 3: AUTOSAR C++14

Language support library - partial Support

. . . continued

18.5.5A Memory management functions shall ensure the following: (a)
deterministic behavior resulting with the existence of worst-case
execution time, (b) avoiding memory fragmentation, (c) avoid
running out of memory, (d) avoiding mismatched allocations or
deallocations, (e) no dependence on non-deterministic calls to
kernel.

NC

18.5.6A An analysis shall be performed to analyze the failure modes of dy-
namic memory management. In particular, the following failure
modes shall be analyzed: (a) non-deterministic behavior result-
ing with nonexistence of worst-case execution time, (b) memory
fragmentation, (c) running out of memory, (d) mismatched allo-
cations and deallocations, (e) dependence on non-deterministic
calls to kernel.

PC

18.5.7A If non-realtime implementation of dynamic memory manage-
ment functions is used in the project, then memory shall only be
allocated and deallocated during non-realtime program phases.

NC

18.5.8A Objects that do not outlive a function shall have automatic storage
duration.

NC

18.5.9A Custom implementations of dynamic memory allocation and deal-
location functions shall meet the semantic requirements specified
in the corresponding "Required behaviour" clause from the C++
Standard.

PC

18.5.10A Placement new shall be used only with properly aligned pointers
to sufficient storage capacity.

PC

18.5.11A "operator new" and "operator delete" shall be defined together. PC

18.7.1M The signal handling facilities of <csignal> shall not be used. FC+E

18.9.1A The std::bind shall not be used. FC+E

18.9.2A Forwarding values to other functions shall be done via: (1)
std::move if the value is an rvalue reference, (2) std::forward
if the value is forwarding reference.

FC+E

18.9.3A The std::move shall not be used on objects declared const or
const&.

FC+E

18.9.4A An argument to std::forward shall not be subsequently used. NC

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 47

Chapter 3: AUTOSAR C++14

Diagnostics library - partial Support

19.3.1M The error indicator errno shall not be used. FC+E

General utilities library - partial Support

20.8.1A An already-owned pointer value shall not be stored in an unre-
lated smart pointer.

NC

20.8.2A A std::unique_ptr shall be used to represent exclusive ownership. NC

20.8.3A A std::shared_ptr shall be used to represent shared ownership. NC

20.8.4A A std::unique_ptr shall be used over std::shared_ptr if ownership
sharing is not required.

NC

20.8.5A std::make_unique shall be used to construct objects owned by
std::unique_ptr.

FC+E

20.8.6A std::make_shared shall be used to construct objects owned by
std::shared_ptr.

FC+E

20.8.7A A std::weak_ptr shall be used to represent temporary shared
ownership.

NC

Strings library Support

21.8.1A Arguments to character-handling functions shall be repre-
sentable as an unsigned char.

NC

Containers library - partial Support

23.0.1A An iterator shall not be implicitly converted to const_iterator. NC

23.0.2A Elements of a container shall only be accessed via valid refer-
ences, iterators, and pointers.

NC

Algorithms library Support

25.1.1A Non-static data members or captured values of predicate function
objects that are state related to this object’s identity shall not be
copied.

NC

25.4.1A Ordering predicates used with associative containers and STL
sorting and related algorithms shall adhere to a strict weak or-
dering relation.

NC

48 QA Systems GmbH

Chapter 3: AUTOSAR C++14

Numerics library Support

26.5.1A Pseudorandom numbers shall not be generated using std::rand(). FC+E

26.5.2A Random number engines shall not be default-initialized. FC+E

Input/output library - partial Support

27.0.1A Inputs from independent components shall be validated. NC

27.0.1M The stream input/output library <cstdio> shall not be used. FC+E

27.0.2A A C-style string shall guarantee sufficient space for data and the
null terminator.

NC

27.0.3A Alternate input and output operations on a file stream shall not
be used without an intervening flush or positioning call.

NC

27.0.4A C-style strings shall not be used. NC

QA-MISRA Compliance Matrices for MISRA/AUTOSAR C++ 49

https://www.qa-systems.com/qa-misra-tool-trial/
https://www.qa-systems.com/tools/qa-misra/
mailto:sales@qa-systems.com

Bibliography

[1] MISRA Limited. MISRA-C:2004 Guidelines for the use of the C language in critical systems. ISBN
978-0-9524156-4-0, October 2004.

[2] MISRA Limited. MISRA-C:2012 Guidelines for the use of the C language in critical systems. ISBN
978-1-906400-11-8, March 2013.

[3] QA Systems GmbH. QA-MISRA – User Documentation. Version 23.04, Build 13183398, April 18, 2023.

[4] AUTOSAR. Guidelines for the use of the C++14 language in critical and safety-related systems (release
19-03). Release 19-03, March 2019.

[5] Carnegie Mellon University. SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and
Secure Systems. 2016.

[6] ISO. ISO/IEC TS 17961:2013(E): Information Technology–Programming Languages, Their Environ-
ments and System Software Interfaces–C Secure Coding Rules. November 2013.

50 QA Systems GmbH

	Title Page
	Contents
	1 Introduction
	1.1 Terms and Definitions

	2 MISRA C++:2008
	3 AUTOSAR C++14
	Bibliography

